• Title/Summary/Keyword: Polymer Composites

Search Result 1,723, Processing Time 0.024 seconds

Electroactive Polymer Composites as a Tactile Sensor for Biomedical Applications

  • Kim GeunHyung
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.564-572
    • /
    • 2004
  • Modem applications could benefit from multifunctional materials having anisotropic optical, electrical, thermal, or mechanical properties, especially when coupled with locally controlled distribution of the directional response. Such materials are difficult to engineer by conventional methods, but the electric field-aided technology presented herein is able to locally tailor electroactive composites. Applying an electric field to a polymer in its liquid state allows the orientation of chain- or fiber-like inclusions or phases from what was originally an isotropic material. Such composites can be formed from liquid solutions, melts, or mixtures of pre-polymers and cross-linking agents. Upon curing, a 'created composite' results; it consists of these 'pseudofibers' embedded in a matrix. One can also create oriented composites from embedded spheres, flakes, or fiber-like shapes in a liquid plastic. Orientation of the externally applied electric field defines the orientation of the field-aided self-assembled composites. The strength and duration of exposure of the electric field control the degree of anisotropy created. Results of electromechanical testing of these modified materials, which are relevant to sensing and actuation applications, are presented. The materials' micro/nanostructures were analyzed using microscopy and X-ray diffraction techniques.

Compressive Strength of Natural Fiber Reinforced Polymer Composites (천연섬유강화 폴리머 복합재료의 압축강도 특성)

  • Song, Jun-Hee;Mun, Sang-Don;Kim, Yoo-Young;Kim, Hong-Gun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.140-144
    • /
    • 2010
  • In recent years there has been a growing interest for the use of natural fibers in composite applications due to their low cost, environmental friendliness, and good mechanical properties. The purpose of this study is to determine the characteristic of bending strength on bamboo fiber reinforced polymer composites. The parameters of RTM process depend on the weight ratio of bamboo fiber and resin, the number of bamboo ply and amount of hardening agent. Besides the existence of pore in composites according to vacuum time investigated a effect on mechanical properties of reinforced polymer composites. Test result shows that compressive strength was a maximum(approximately 1,840kgf/$cm^2$) value when weight ratio of resin was 12%.

Fire Resistance of Inorganic Polymer Composites for Repair and Rehabilitation (보수.보강에 사용하는 무기계 폴리머 복합재료의 내열성능)

  • Balaguru, P.N.;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.647-652
    • /
    • 1997
  • Repair and rehabilitation of existing structures is becoming a major part of construction, both in the industrially developed and developing countries. Advanced high strength composites are being utilized more and more for these applications because they are much stronger than steel, non-corrosive, and light. The light weight reduces the construction cost and time sustantially. The fibers are normally made of aramid, carbon, or glass and the binders are typically epoxies or esters. One major disadvantage of these composites is the vulnerability to fire. In most instance, the temperature cannot exceed $300^{\cire}C$. Since carbon and glass can substain high temperatures, an inorganic polymer is being evaluated for use as a matrix. The matrix can sustain more than $1000^{\cire}C$. The results reported in this paper deal with the mechanical properties of carbon composites made with the inorganic polymer and the behavior strengthened reinforced concrete beams. The results indicate that the new matrix can be successfully utilized for a number of applications.

  • PDF

Preparation and characterization of carbon fiber-reinforced thermosetting composites: a review

  • Jin, Fan-Long;Park, Soo-Jin
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.67-77
    • /
    • 2015
  • Carbon fibers (CFs) have a unique combination of properties which allow them to be widely used as reinforcing materials in advanced polymer composites. The mechanical properties of CF-reinforced polymer composites are governed mainly by the quality of interfacial adhesion between the CFs and the polymer matrix. Surface treatments of CFs are generally carried out to introduce chemical functional groups on the fiber surfaces, which provide the ability to control the surface characteristics of CFs. In this study, we review recent experimental studies concerning various surface treatment methods for CFs. In addition, direct examples of the preparation and properties of CF-reinforced thermosetting composites are discussed.

New Functional Conductive Polymer Composites Containing Nickel Coated Carbon Black Reinforced Phenolic Resin

  • Farid El-Tantawy;Nadia Abdel Aal;Yong Kiel Sung
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.194-205
    • /
    • 2005
  • The network structure of Ni-coated carbon black (NCB) composites filled with phenolic resin was investigated by means of using scanning electron microscopy, viscosity, interfacial tension, shrinkability, Flory-Huggins interaction parameters, and swelling index. The electrical properties of the composites have been characterized by measurement of the specific conductivity as a function of temperature. Additionally, the variation of conductivity with temperature for the composites has been reported and analyzed in terms of the dilution volume fraction, relative volume expansion, and barrier heights energy. The thermal stability of phenolic-NCB composites has been also studied by means of the voltage cycle processes. The experimental data of EMI wave shielding were analyzed and compared with theoretical calculations. The mechanical properties such as tensile strength, tensile modulus, hardness and elongation at break (EB) of NCB-phenolic resin composites were also investigated.

Oxidation Resistance and Graphitization of Boron Oxide Implanted Carbon/Carbon Composites

  • Joo, Hyeok-Jong;Oh, In-Hwan;Ahn, Il-Hwan
    • Carbon letters
    • /
    • v.5 no.3
    • /
    • pp.127-132
    • /
    • 2004
  • Chop molding composites and 2D carbon/carbon composites were manufactured by hot press molding method. Phenol resin of novolac type was used for matrix precursor and PAN-based carbon, PAN-based graphite and pitch-based carbon fiber were used for reinforcement and boron oxide was used for oxidation retardant. All of the composites were treated by $2000^{\circ}C$ and $2400^{\circ}C$ graphitization process, respectively. After graphitization process, amount of a boron residue in carbon/carbon composites is much according to irregularity of used raw materials. Under the presence of boron in carbon/carbon composites, catalytic effect of boron was a little at $2000^{\circ}C$ graphitization temperature. However, it was quite at $2400^{\circ}C$ graphitization.

  • PDF

Multiscale approach to predict the effective elastic behavior of nanoparticle-reinforced polymer composites

  • Kim, B.R.;Pyo, S.H.;Lemaire, G.;Lee, H.K.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.3
    • /
    • pp.173-185
    • /
    • 2011
  • A multiscale modeling scheme that addresses the influence of the nanoparticle size in nanocomposites consisting of nano-sized spherical particles embedded in a polymer matrix is presented. A micromechanics-based constitutive model for nanoparticle-reinforced polymer composites is derived by incorporating the Eshelby tensor considering the interface effects (Duan et al. 2005a) into the ensemble-volume average method (Ju and Chen 1994). A numerical investigation is carried out to validate the proposed micromechanics-based constitutive model, and a parametric study on the interface moduli is conducted to investigate the effect of interface moduli on the overall behavior of the composites. In addition, molecular dynamics (MD) simulations are performed to determine the mechanical properties of the nanoparticles and polymer. Finally, the overall elastic moduli of the nanoparticle-reinforced polymer composites are estimated using the proposed multiscale approach combining the ensemble-volume average method and the MD simulation. The predictive capability of the proposed multiscale approach has been demonstrated through the multiscale numerical simulations.

Study on lowering the percolation threshold of carbon nanotube-filled conductive polypropylene composites

  • Park, Seung Bin;Lee, Moo Sung;Park, Min
    • Carbon letters
    • /
    • v.15 no.2
    • /
    • pp.117-124
    • /
    • 2014
  • Conductive polymer composites (CPCs) consist of a polymeric matrix and a conductive filler, for example, carbon black, carbon fibers, graphite or carbon nanotubes (CNTs). The critical amount of the electrically conductive filler necessary to build up a continuous conductive network, and accordingly, to make the material conductive; is referred to as the percolation threshold. From technical and economical viewpoints, it is desirable to decrease the conductive-filler percolation-threshold as much as possible. In this study, we investigated the effect of polymer/conductive-filler interactions, as well as the processing and morphological development of low-percolation-threshold (${\Phi}c$) conductive-polymer composites. The aim of the study was to produce conductive composites containing less multi-walled CNTs (MWCNTs) than required for pure polypropylene (PP) through two approaches: one using various mixing methods and the other using immiscible polymer blends. Variants of the conductive PP composite filled with MWCNT was prepared by dry mixing, melt mixing, mechanofusion, and compression molding. The percolation threshold (${\Phi}c$) of the MWCNT-PP composites was most successfully lowered using the mechanofusion process than with any other mixing method (2-5 wt%). The mechanofusion process was found to enhance formation of a percolation network structure, and to ensure a more uniform state of dispersion in the CPCs. The immiscible-polymer blends were prepared by melt mixing (internal mixer) poly(vinylidene fluoride) (PVDF, PP/PVDF, volume ratio 1:1) filled with MWCNT.

Effect of Carbon Nanotube Pre-treatment on Dispersion and Electrical Properties of Melt Mixed Multi-Walled Carbon Nanotubes / Poly(methyl methacrylate) Composites

  • Park Won Ki;Kim Jung Uyun;Lee Sang-Soo;Kim Junkyung;Lee Geon-Woong;Park Min
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.206-211
    • /
    • 2005
  • Multi-walled carbon nanotubes (MWNTs) pre-treated by concentrated mixed acid or oxidized at high temperature were melt mixed with poly(methyl methacrylate) (PMMA) using a twin screw extruder. The morphologies and electrical properties of the MWNT/PMMA composites were investigated. The thermally treated MWNTs (t-MWNTs) were well dispersed, whereas the acid treated MWNTs (a-MWNTs) were highly entangled, forming large-sized clusters. The resulting electrical properties of the composites were analyzed in terms of the carbon nanotube (CNT) dispersion. The experimental percolation threshold was estimated to be $3 wt\%$ of t-MWNTs, but no percolation occurred at similar concentrations in the a-MWNT composites, due to the poor dispersion in the matrix.

Electromagnetic Shielding Polymer Composites with Segregated Structure for Automotive Part Application: A Review (자동차 부품 적용을 위한 Segregated structure를 갖는 전자파 차폐용 고분자 복합소재 연구동향)

  • Lee, Jinwoo;Suhr, Jonghwan
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.223-231
    • /
    • 2022
  • With the rapid growth of the future mobility market, a large number of electronic parts are being used in automobile, and the importance of electromagnetic interference (EMI) shielding in the automobile market is growing to minimize malfunctioning among the parts. Accordingly, conductive polymer composites (CPCs) are getting a lot of attention as EMI shielding materials for the automotive, but there are still challenges in CPCs like high content of conductive filler to achieve proper EMI shielding effectiveness, and poor mechanical properties. This paper introduces main methods to manufacture CPCs with segregated filler structure, which can significantly reduce the filler content, and analyzes EMI shielding performance of each manufacturing method.