• 제목/요약/키워드: Polylactic acid

검색결과 111건 처리시간 0.026초

선형 폴리락틱산/스타형 폴리락틱산 블렌드의 열적 특성 변화에 대한 연구 (Thermal Properties of Linear Shape Polylactic Acid/Star Shape Polylactic Acid Blends)

  • 천상욱;김수현;김영하;강호종
    • 폴리머
    • /
    • 제24권3호
    • /
    • pp.333-341
    • /
    • 2000
  • 선형 폴리락틱산/스타형 폴리락틱산 블렌드를 용융 및 용액 블렌딩에 의해 제조하여 이들의 열적 특성 및 결정화 거동을 살펴보고 블렌딩 방법이 이들에 미치는 영향을 살펴보았다. 분지형 구조를 갖는 스타형 폴리락틱산은 선형 폴리락틱산에 비하여 용융 및 용액 가공에서의 분자량 감소가 적음을 확인하였으며, 용융 가공에 비하여 용액 가공에서 분자량 분포가 넓어짐을 확인하였다. 스타형 폴리락틱산을 선형 폴리락틱산에 블렌딩하였을 경우 용융온도의 감소와 유리전이온도의 감소를 확인하였으며, 용액 블렌딩에 의하여 얻어진 블렌드는 용융 블렌딩에 의하여 얻어진 블렌드에 비하여 낮은 유리전이온도를 갖음을 알 수 있었다. 분지형 구조로 인하여 상대적으로 결정화가 어려운 스타형 폴리락틱산과 스타형 폴리락틱산 함량이 높은 블렌드의 경우, 용액 가공에 의하여 용융 가공에서 보다 높은 결정화도를 얻을 수 있었다.

  • PDF

제사속도와 열처리에 따른 polylactic acid 섬유의 물성 및 생분해성 변화 (Effects of Spinning Speed and Heat Treatment on the Mechanical Property and Biodegradability of Polylactic Acid Fibers)

  • 박정희;홍은영
    • 한국의류학회지
    • /
    • 제30권4호
    • /
    • pp.607-614
    • /
    • 2006
  • This study was carried out to suggest the optimal spinning process condition which provides a proper range of tenacity and biodegradability as textile fibers. The effects of the melt spinning speed and heat treatment on the mechanical property and biodegradability of polylactic acid fiber were investigated. Polylactic acid(PLA) was spun in a high spinning speed of $2000{\sim}4000m/min$. Each specimen was heat-treated at $100^{\circ}C$ during 30min. Mechanical properties such as breaking stress and the degree of crystallinity were evaluated using WAXS. Biodegradability was estimated from the decrease of breaking stress, weight loss, and the degree of crystallinity after soil burial. Experimental results revealed that heat treated specimens showed higher breaking stress than untreated specimens, but the increase was not so high as was expected from the remarkable change of crystallinity by heat treatment. It was concluded that breaking stress was more influenced by spinning speed than heat treatment. In the soil burial test, however biodegradability calculated from weight loss was more influenced by heat treatment than spinning speed.

β-Cyclodextrin과 Polylactic Acid간의 포접화합물 제조 및 특성 분석 (Preparation and Characterization of Inclusion Complex between β-Cyclodextrin and Polylactic Acid)

  • Nan, Song Ya;Fang, Zhou Yu;Jun, Zhen Wei
    • 폴리머
    • /
    • 제39권2호
    • /
    • pp.261-267
    • /
    • 2015
  • The inclusion complexes (ICs) between polylactic acid (PLA) and ${\beta}$-cyclodextrin (CD) were prepared by co-precipitation method in this work. The orthogonal experiments were designed to investigate the influence of different factors on the formation of inclusion complexes. The results suggested that the optimum scheme of inclusion compounds could be obtained when the feeding ratio of CD to PLA (wt%) was 20:1, stirring speed was 6 kr/min and the stirring time was 30 min. The structures and properties of the inclusion complexes were characterized by $^1H$ NMR, FTIR, DSC, FT-Raman, XRD and TGA. The DSC results demonstrated that the crystallization behavior of the inclusion complexes nearly disappeared. It was found that ${\beta}$-CD-PLA inclusion complex had a better thermal stability compared with the neat PLA. The model of the inclusion complexes was proposed on the basis of XRD, $^1H$ NMR and DSC results.

대기압 플라즈마 처리에 따른 PLA(polylactic acid) 필름의 표면특성 변화 (Surface Characteristics of PLA(Polylactic acid) Film Treated by Atmospheric Pressure Plasma)

  • 정진석;류욱연;최호석
    • Korean Chemical Engineering Research
    • /
    • 제47권1호
    • /
    • pp.59-64
    • /
    • 2009
  • 본 연구에서는 대기압 플라즈마를 이용하여 polylactic acid(PLA) 필름의 표면 특성 변화를 알아보았다. 극성 용매인 물과 비극성 용매인 Diiodomethane을 사용하여 표면의 접촉각을 측정하고, 이 값을 이용해 표면자유에너지 값을 계산하였다. 또한 대기압 플라즈마의 처리 조건에 따른 PLA 필름의 접촉각과 표면자유에너지 값을 최적화하였다. 그 결과 대기압 플라즈마 처리 시간 30 sec, RF-power 70 W, Ar 가스 유량은 6 lpm, 공기 중의 노출 시간은 5 min이었을 때가 가장 낮은 물 접촉각을 나타내었고, 표면자유에너지는 가장 높은 값을 나타내었다. XPS 분석을 통해서 대기압 플라즈마 처리 전 후 PLA 필름의 화학적 관능기의 변화를 분석하였으며, PLA 표면에 -C=O, -CO, -COO 등의 변화를 관찰하였다.

Biodegradability of Polylactic Acid Fabrics by Enzyme Hydrolysis and Soil Degradation

  • Lee, So Hee
    • 한국염색가공학회지
    • /
    • 제29권4호
    • /
    • pp.181-194
    • /
    • 2017
  • The biodegradability of polylactic acid(PLA) fabrics was evaluated by two methods: enzyme and soil degradation. Three different enzymes were selected to evaluate. Degradation times were measured at optimal enzyme treatment conditions. Biodegradation by enzymatic hydrolysis was compared with soil degradation. As a result, biodegradation created cracks on the fiber surface, which led to fiber thickening and shortening. In addition, new peak was observed at $18.5^{\circ}$ by degradation. Moreover, cracks indicating biofragmentation were confirmed by enzyme and soil degradation. By enzyme and soil degradation, the weight loss of PLA fabrics was occurred, there through, the tensile strength decreased about 25% by enzyme hydrolysis when 21 days after, and 21.67% by soil degradation when 60 days after. Furthermore, the biodegradability of PLA fabrics by enzymatic and soil degradation was investigated and enzymatic degradation was found to be superior to soil degradation of PLA fabrics. Among the three enzymes evaluated for enzymatic degradation, alcalase was the most efficient enzymes. This study established the mechanism of biodegradation of PLA nonwovens, which might prove useful in the textile industry.

Hydrolysis of Polylactic Acid Fiber by Lipase from Porcine pancreas

  • Lee, So-Hee;Song, Wba-Soon
    • 한국의류학회지
    • /
    • 제35권6호
    • /
    • pp.670-677
    • /
    • 2011
  • This study is to optimize the enzymatic processing conditions of Polylactic Acid (PLA) fiber using lipase from Porcine pancreas as an environmental technology. Hydrolytic activity dependent on pH, temperature, enzyme concentration, and treatment time, and structural change of PLA fiber were evaluated. The PLA fiber hydrolysis by lipase was maximized at 50% (o.w.f) lipase concentration $50^{\circ}C$ for 120 minutes under pH 8.5. There was a change of the protein absorbance in the treatment solution before and after the lipase treatment. In addition, there was no substantial change in the molecular and crystalline structures of PLA by lipase treatment as confirmed by DSC, XRD, and FT-IR.

Polylactic acid(PLA) 위편성물의 수축특성과 형태안정성에 관한 연구 (A Study on the Shrinkage and Dimensional Characteristics of the Weft Knitted Fabrics with Polylactic acid(PLA) Yarn)

  • 최재우;장봉식;이은우
    • 한국산업융합학회 논문집
    • /
    • 제16권2호
    • /
    • pp.47-52
    • /
    • 2013
  • Aim of this study is to investigate the dimensional and shrinkage characteristics of the weft knitted fabrics with Polylactic acid(PLA) knitted yarn. This PLA knitted yarn was made of the biodegradability fiber. The structure of weft knitted fabrics that was utilized for this study is the plain stitch, which is the most basic structure among all weft knitted fabrics. As the stitch length is shorter, the stitch density, courses density, and wales density are more increasing. The stitch density increased as pre-treatment process and dyeing process progressed. On the contrary, the heat setting process made it decreasing. The MR(Machine Relaxation) and DR(Dry Relaxation) standard area shrinkage were increasing as wet process progressed and as the stitch lengths are long.

Effect of Polyethylenimine Type in Polylactic acid Nanoparticles/DNA Complex on the Transfection Efficiency

  • Chae, Jong-Hyuck;Park, Yu-Mi;Kim, Kyeong-Man;Lee, Yong-Bok;Shin, Sang-Chul;Oh, In-Joon
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.425.1-425.1
    • /
    • 2002
  • Nanoparticles of polylactic acid (PLA) and polyethylenimine (PEI) as an effective gene delivery agent were prepared and characterized. As a model plamid DNA. PME185/$\beta$-gal. a mammalian expression vector. and fluorescence enhancing protein (pEGHP) were used. The effects of PEI type on the physical properties of nanoparticles and transfection efficiency were examined. (omitted)

  • PDF

Application of Lemongrass Oil-Containing Polylactic Acid Films to the Packaging of Pork Sausages

  • Yang, Hyun-Ju;Song, Kyung Bin
    • 한국축산식품학회지
    • /
    • 제36권3호
    • /
    • pp.421-426
    • /
    • 2016
  • Polylactic acid (PLA) is a biodegradable and renewable polymer, which represents a valuable alternative to plastic packaging films, often associated with environmental problems. In this study, we tested the suitability of PLA as a biodegradable packaging film and assessed the antimicrobial activity of lemongrass oil (LO), incorporated into the PLA film in different concentrations. To obtain the optimal physical properties for PLA films, tensile strength, elongation at break, and water vapor permeability were measured under different preparation conditions. In addition, the antimicrobial activity of the LO contained in the PLA film against Listeria monocytogenes was investigated by disc diffusion and viable cell count. Among all concentrations tested, 2% LO was the most suitable in terms of antimicrobial activity and physical properties of the PLA film. Based on these results, we used the PLA film containing 2% LO to pack pork sausages; after 12 d of storage at 4℃, the population of inoculated L. monocytogenes in the sausage samples wrapped with the PLA film containing 2% LO was reduced by 1.47 Log CFU/g compared with the control samples. Our data indicate that PLA films containing 2% LO represent a valuable means for antimicrobial sausage packaging.