• Title/Summary/Keyword: Polyimide delamination

Search Result 10, Processing Time 0.019 seconds

Fracture Analysis of Electronic IC Package in Reflow Soldering Process

  • Yang, Ji-Hyuck;Lee, Kang-Yong;Lee, Taek sung;Zhao, She-Xu
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.357-369
    • /
    • 2004
  • The purposes of the paper are to analyze the fracture phenomenon by delamination and cracking when the encapsulant of plastic IC package with polyimide coating shows viscoelastic behavior under hygrothermal loading in the IR soldering process and to suggest more reliable design conditions by the approaches of stress analysis and fracture mechanics. The model is the plastic SOJ package with the polyimide coating surrounding chip and dimpled diepad. On the package without cracks, the optimum position and thickness of polyimide coating to decrease the maximum differences of strains at the bonding surfaces of parts of the package are studied. For the model delaminated fully between the chip and the dimpled diepad, C(t)-integral values are calculated for the various design variables. Finally, the optimal values of design variables to depress the delamination and crack growth in the plastic IC package are obtained.

Coupled Thermal-Structure Analysis of UV Laser Pulsing according to the Thickness of Copper Film on the Surface of Polyimide (UV 펄스 레이저 가공의 구리 박막 두께에 따른 열-구조 연성 해석)

  • Shin, Minjae;Shin, Bosung
    • Laser Solutions
    • /
    • v.16 no.2
    • /
    • pp.7-11
    • /
    • 2013
  • Recently advanced laser processing is widely introduced to improve the efficiency of micro part production and to reduce the rate of inferior goods. In this paper the trend of delamination of single layer with both thin copper and polyimide according to the variation of copper thickness was investigated using the coupled thermal-structural analysis of ANSYS. From these analyses results, some conclusions were obtained. Firstly, the maximum temperature was increasing with respect to decrease of copper thickness. Secondly the maximum strain which was in general estimation the main effect of the delamination was observed in case of the copper thickness of $5{\mu}m$. Finally the trend of the delamination was decreasing with increasing the thickness of copper layer.

  • PDF

Polyimide Surface Modification using UV Laser (UV 레이저를 이용한 폴리이미드 표면 개질에 관한 연구)

  • Oh, Jae-Yong;Lee, Jung-Han;Park, Duk-Su;Shin, Bo-Sung
    • Laser Solutions
    • /
    • v.13 no.3
    • /
    • pp.13-18
    • /
    • 2010
  • In this paper, polyimide (PI) surface was modified by UV Laser with a low laser fluence and investigated changes of surface geometry and chemical characteristics by SEM (scanning electron microscope), X-ray diffraction (XRD), XPS (x-ray photoelectron spectroscopy) and the measurements of contact angle of water. PI surface was peeled off and modified with microstructure fabrications by photochemical ablation over the laser fluence of 50 mJ/cm2. As laser fluence increased, delamination of PI surface was occurred largely and strongly. In chemical characteristics, the O/C and N/C atomic ratios increased and contact angle decreased from $80^{\circ}$ to $40^{\circ}$.

  • PDF

Failure Mechanism of Bendable Embedded Electronic Module Under Various Environment Conditions (Bendable 임베디드 전자모듈의 손상 메커니즘)

  • Jo, Yun-Seong;Kim, A Young;Hong, Won Sik
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.59-63
    • /
    • 2013
  • A bendable electronic module has been developed for a mobile application by using a low-cost roll-to-roll manufacturing process. In flexible embedded electronic module, a thin silicon chip was embedded in a polymer-based encapsulating adhesive between flexible copper clad polyimide layers. To confirm reliability and durability of prototype bendable module, the following tests were conducted: Moisture sensitivity level, thermal shock test, high temperature & high humidity storage test, and pressure cooker tester. Those experiments to induce failure of the module due to temperature variations and moisture are the experiment to verify the reliability. Failure criterion was 20% increase in bump resistance from the initial value. The mechanism of the increase of the bump resistance was analyzed by using non-destructive X-ray analysis and scanning acoustic microscopy. During the pressure cooker test (PCT), delamination occurred at the various interfaces of the bendable embedded modules. To investigate the failure mechanism, moisture diffusion analysis was conducted to the pressure cooker's test. The hygroscopic characteristics of the encapsulating polymeric materials were experimentally determined. Analysis results have shown moisture saturation process of flexible module under high temperature/high humidity and high atmosphere conditions. Based on these results, stress factor and failure mechanism/mode of bendable embedded electronic module were obtained.

Study on Fatigue Behavior of Carbon Fiber Reinforced Polyimide Composites (탄소섬유강화 복합적층판의 피로특성에 관한 연구)

  • 이창수;황운봉;한경섭;윤병일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.49-60
    • /
    • 1991
  • Fatigue behavior of carbon fiber reinforced polyimide composite materials was studied experimentally and analytically. The physical variables, such as cyclic displacements and hysteresis loop energy were observed during fatigue tests. Fatigue life of the investigated [0/90]$_{2S}$ laminates was predicted by H'||'&'||'H models which was proposed based on the fatigue modulus and resultant strain. The predicted fatigue life by H'||'&'||'H curves was reasonably close to the experimental data. Fractography study shows that fatigue failure mechanism of [0/90]$_{2S}$ laminated composite materials involves failure break, matrix tearing and fiber-matrix debonding as well as delamination of layers.

Evaluation of Residual Strains under Pure Bending Loading for Colorless and Optically Transparent Polyimide Film for Flexible Display (유연 디스플레이용 무색 투명 폴리이미드 필름의 굽힘 잔류 변형률 평가)

  • Choi, Min-Sung;Park, Min-Seok;Park, Han-Yeong;Oh, Chung-Seog
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.49-54
    • /
    • 2021
  • The display industry is transitioning from traditional rigid products such as flat panel displays to flexible or wearable ones designed to be folded or rolled. Accordingly, colorless and optically transparent polyimide (CPI) films are one of the prime candidates to substitute traditional cover glass as a passivation layer to accommodate product flexibility. However, CPI films subjected to repetitive pure bending loads inevitably entail an accumulation of residual strain that can eventually cause wrinkles or delamination in the underlying component after a certain number of static and cyclic loading. The purpose of this study is to establish an experimental method to systematically evaluate the bending residual strain of CPI films. Films were monotonically and cyclically wrapped on mandrels of various diameters to ensure a constant strain in each. After unwrapping the wound CPI film, the residual radius of curvature remaining on the film was measured and converted into residual strain. The critical radius of curvature at which residual strain does not remain was about 5 mm, and the residual strain decreased in proportion to the log time. It is expected that flexible displays can be reliably designed using the data between the applied bending strain and the residual strain.

유연 전자소자 구현을 위한 폴리이미드 기판 제작

  • Lee, Jun-Gi;Kim, Sang-Seop;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.258-258
    • /
    • 2011
  • 최근 유연 기판을 이용한 태양전지 및 TFT 등 전자소자 개발에 관한 연구가 주목받고 있다. 본 연구에서는 공정 시 유리한 유리기판상 전자소자 제작 후 폴리이미드막 박리를 통한 유연전자 소자 구현을 목적으로 한다. 폴리이미드막 박리를 목적으로 희생층으로서 a-Si:H을 사용하였다. 유리기판상에 60 nm 두께의 a-Si : H을 ICP (Induced coupled plasma) 공정으로 증착한 후 a-Si : H층 상부에 30 ${\mu}m$ 두께로 폴리이미드를 코팅하여 Hot plate와 furnace에서 열처리를 거쳤다. 이후 각기 다른 파장을 갖는 레이저의 파워를 가변하며 유리 기판 후면에 조사하였다. 실험 결과 355 nm UV 레이저로 가공한 경우 희생층으로 사용 된 a-Si : H층 내에 존재하는 수소가 레이저 빛 에너지에 의해 결합이 끊어지면서 유리기판과 폴리이미드막이 분리됨을 확인하였다.

  • PDF

Reliability of Cu Interconnect under Compressive Fatigue Deformation Varying Interfacial Adhesion Treatment (유연소자용 기판과의 접착 특성에 따른 구리 배선의 압축 피로 거동 및 신뢰성)

  • Min Ju Kim;Jeong A Heo;Jun Hyeok Hyun;So-Yeon Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.105-111
    • /
    • 2023
  • Electronic devices have been evolved to be mechanically flexible that can be endured repetitive deformation. This evolution emphasizes the importance of long-term reliability in metal wiring connecting electronic components, especially under bending fatigue in compressed environments. This study investigated methods to enhance adhesion between copper (Cu) and polyimide (PI) substrates, aiming to improve the reliability of copper wiring under such conditions. We applied oxygen plasma treatment and introduced a chromium (Cr) adhesion layer to the polyimide substrate. Our findings revealed that these adhesion enhancement methods significantly affect compression fatigue behavior. Notably, the chromium adhesion layer, while showing weaker fatigue characteristics at 1.5% strain, demonstrated superior performance at 2.0% strain with no delamination, outperforming other methods. These results offer valuable insights for improving the reliability of flexible electronic devices, including reducing crack occurrence and enhancing fatigue resistance in their typical usage environments.

Stress Analysis for Bendable Electronic Module Under Thermal-Hygroscopic Complex Loads (열·습도 복합하중에서의 유연성 전자모듈에 대한 구조해석)

  • Han, Changwoon;Oh, Chulmin;Hong, Wonsik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.619-624
    • /
    • 2013
  • A bendable electronic module is developed. In this module, thin silicon electronic chips are embedded in a polymer-based encapsulating adhesive between flexible copper-clad polyimide layers. During the qualification test of a harshly thermal-hygroscopic complex loading condition, delaminations occur inside the module layers. A finite element model is developed for the module. To investigate the effect of hygroscopic stress on delamination, the results of the thermal and thermal-hygroscopic loads are compared. The analysis results reveal that the hygroscopic effect more strongly affects delamination than does the thermal effect. The potential failure mechanisms of the module are investigated based on the stress analysis.

Moisture Diffusion Analysis for Bendable Electronic Module Under Autoclave Test Condition (유연성 전자모듈에 대한 오토클레이브 시험조건에서의 습기확산해석)

  • Han, Chang-Woon;Oh, Chul-Min;Hong, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.523-528
    • /
    • 2012
  • A bendable electronic module is developed for a mobile application by using a low-cost roll-to-roll manufacturing process. In the module, a thin silicon chip is embedded in a polymer-based encapsulating adhesive between flexible copper clad polyimide layers. A set of tests are conducted for the purpose of qualification: thermal shock, high temperature storage, and autoclave tests. During the autoclave test, delamination occurs at many places within the module layers. To investigate the failure mechanism, moisture diffusion analysis is conducted for the interior of the module under the autoclave test condition. For the analysis, the hygroscopic characteristics of the encapsulating materials are experimentally determined. Analysis results indicate the moisture saturation process in the interior of the module under the autoclave test condition.