• Title/Summary/Keyword: Polygonal ferrite

Search Result 43, Processing Time 0.029 seconds

Effects of TMCP on the microstructure and mechanical properties of low carbon HSLA steels (저탄소.저합금 강의 미세구조 및 기계적 성질에 미치는 가공 열처리 조건의 영향)

  • Kang, J.S.;Huang, Yusen;Lee, C.W.;Park, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.172-175
    • /
    • 2006
  • Effects of deformation at austenite non-recrystallization region and cooling rate on the microstructure and mechanical properties of low carbon (0.06 wt. %) high strength low alloy steels have been investigated. Average grain size decreased and polygonal ferrite transformation promoted with increasing deformation amount due to increase of ferrite nucleation site. As cooling rate increased, the major microstructure changed from polygonal ferrite to acicular ferrite and the fraction of M/A constituents gradually increased. Discontinuous yielding occurred in highly deformed specimen due to the formation of polygonal ferrite. However, small grain size of highly deformed specimen caused lower ductile-to-brittle transition temperature than slightly deformed specimen.

  • PDF

Effects of Alloy Additions and Annealing Parameters on Microstructure in Cold-Rolled Ultra Low Carbon Steels (극저탄소 냉연강판에서 합금원소 및 어닐링조건이 미세조직에 미치는 영향)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.2
    • /
    • pp.78-86
    • /
    • 2004
  • Effects of the annealing parameters on the formation of ferrites transformed at low temperatures were studied in cold-rolled ultra low carbon steels with niobium and/or chromium. Niobium and chromium were found to be effective in the formation of the low temperature transformation ferrites. The low temperature transformation ferrites more easily formed when both higher annealing temperature and longer annealing time, allowing substitutional alloying elements to distribute between phases, are in combination with faster cooling rate. It was found from EBSD study that the additions of niobium or chromium resulted in the increase in the numbers of high angle grain boundaries and the decrease in those of the low angle grain boundaries in the microstructures. Both granular bainitic ferrite and bainitic ferrite were characterized by the not clearly etched grain boundaries in light microscopy because of the low angle grain boundaries.

The Influence of Microstructure on the Bauschinger Effect in X80 Grade API Steel (X80급 API 강의 바우싱거 효과에 미치는 미세조직의 영향)

  • Park, J.S.;Kim, D.W.;Chang, Y.W.
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.118-125
    • /
    • 2006
  • API steel is used for line-pipe to transport the oil and natural gas. As the recent trends in the development of API steel are towards the use of larger diameter and thicker plate, many researches have been studied to achieve higher strength, higher toughness and lower yield ratio in API steel. However, the strength of API steel after pipe forming is changed depending on the competition of the Bauschinger effect and work hardening which are affected by the strain history during pipe forming process. So, the purpose of this study is to investigate the influence of microstructure on the Bauschinger effect for API steel. To change the microstructure of API steel we have changed the hot rolling condition and the amounts of V and Cu addition. The compression-tensile test and the microstructure observation by OM and TEM were conducted to investigate the yield strength drop and the correlation between the Bauschinger effect and microstructure of API steel. The experimental results show that the increase of polygonal ferrites volume fraction increases the Baushcinger effect due to the back stress which comes from the increase of mobile dislocation density at polygonal ferrite interior during the compressive deformation. The hot rolling condition was more effective on the Bauschinger effect in API steel than the small amount of V and Cu addition.

A Study of Tailored Blank Welding between Mild Steel and Zn-coated Steel Sheets by $CO_2$ Laser Beam ($CO_2$레이저빔에 의한 저탄소강판과 아연도금강판의 Tailored Blank 용접에 관한 연구)

  • 서종현;김도훈;유병길;이경돈
    • Laser Solutions
    • /
    • v.1 no.1
    • /
    • pp.4-10
    • /
    • 1998
  • A basic research for tailored blank welding between mild steel and Zn-coated steel was carried out with $CO_2$ laser beam. The materials used in this work were low carbon steel sheet with a thickness of 1.2mm and Zn-coated steel sheet with the same thickness and 6.3$\mu$m Zn coating. Experiments were carried out by applying the Taguchi method in order to obtain optimized conditions for the application of tailored blank laser welding method in practical manufacturing process. Optical microscopy, XRD, SEM and TEM analysis were performed to observe microstructures and to determine the solidification mode of welded zone. Also mechanical properties were measured by microhardness test tensile test and Erichsen test in order to evaluate the formability of welded specimen. There was no trapped Zn in the fusion zone, and the phases in this region consisted of polygonal ferrite, quasi-polygonal ferrite, banitic ferrite and martensite. The elongation value of welded specimen was more than 80% of that value in the substrate and LDH value was more than 90% of that value in the substrate metal.

  • PDF

A Study on the Effect of Heat Input on the Microstructure and Toughness of Weldments Made by Domestic Flux Cored Wires. (국산 플럭스 코어드 와이어 용접에서 입열량이 용접부의 미세조직과 인성에 미치는 영향)

  • 고진현;국정한
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.57-69
    • /
    • 1993
  • In the present study, the microstructure and Charpy V notch toughness of multipass $CO_2$ FCA weldment in three different heat inputs(1-3KJ/mm)were investigated. The weldments using two different domestic FCAW wires(AWS E71T-1 and E71T-5 equivalent) in C-Mn steel were chemically analysed. The following conclusions can be inferred. 1. T-1 wire Showed a stable arc transfer, less spatter and harsh, a better bead spreading and easy slag removal, whereas T-5 wire suffered from the arc stability, which tended to increase spatter and produce a more convex bead. 2.The microsturctures of the top beads of the weldments in three different heat inputs consisted of coarse-grained boundary ferrite and Widmanstatten ferrite side plate with increasing heat inputs. The modest fraction of acicular ferrite in the two wire weldments was observed in the 2KJ/mm heat input. 3.The fine-grained reheated zones of both welds consisted of a duplex microstructure of polygonal ferrite and second phases. 4. The basic flux weldment of T-5wires showed a higher Charpy impact property than that of T-1 wires because of a higher fraction of acicular ferrite in the weld microstructure.

  • PDF

The Effects of δ-ferrite on Weldment of 9-12% Cr Steels (9-12% Cr강의 용접부에 미치는 δ-ferrite의 영향)

  • Ahn, Sung-Yong;Kang, Namhyun
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.8-16
    • /
    • 2013
  • As the energy consumption increases rapidly, power generation needs the high energy efficiency continuously. To achieve the high efficiency of power generation, the materials used have to endure the higher temperature and pressure. The 9-12%Cr steels possess good mechanical properties, corrosion resistance, and creep strength in high temperature due to high Cr contents. Therefore, the 9-12%Cr steels are widely used for the high-temperature components in power plants. Even though the steels usually have a fully martensitic microstructure, they are susceptible to the formation of ${\delta}$-ferrite specifically during the welding process. The formation of ${\delta}$-ferrite has several detrimental effects on creep, ductility and toughness. Therefore, it is necessary to avoid its formation. As the volume fraction of ${\delta}$-ferrite is less than 2% in microstructure, it has the isolated island morphology and causes no significant degradation on mechanical properties. For ${\delta}$-ferrite above 2%, it has a polygonal shape affecting the detrimental influence on the mechanical properties. The formation of ${\delta}$-ferrite is affected by two factors: a chemical composition and a welding heat input. The most effective ways to get a fully martensite microstructure are to reduce the chromium equivalent less than 13.5, to keep the difference between the chromium and nickel equivalent less than 8, and to reduce the welding heat input.

A Study on the Surface Characteristics of Dual Phase Steel by Electron Backscatter Diffraction (EBSD) Technique

  • Jeong, Bong-Yong;Ryou, Min;Lee, Chongmu;Kim, Myung Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.1
    • /
    • pp.20-23
    • /
    • 2014
  • Dual phase steels have a microstructure comprising of a polygonal ferrite matrix together with dispersed islands of martensite. There are clear differences between the image quality (IQ) map of the dual phase and the corresponding ferritic/pearlitic structures, both in the as-heat treated and cold rolled conditions. Electron backscatter diffraction (EBSD) techniques were used to study the evolution substructure of steel due to plastic deformation. The martensite-ferrite and ferrite-pearlite interfaces were observed. The interface can be a source of mobile dislocations which the bands seem to originate from the martensite islands. In particular, the use of image quality is highlighted.

In-Situ Observation of Acicular Ferrite Transformation in High-Strength Low-Alloy Steel Using Confocal Laser Scanning Microscopy

  • Sang-In Lee;Seung-Hyeok Shin;Hyeonwoo Park;Hansoo Kim;Joonho Lee;Byoungchul Hwang
    • Archives of Metallurgy and Materials
    • /
    • v.67 no.4
    • /
    • pp.1497-1501
    • /
    • 2022
  • In-situ observation of the transformation behavior of acicular ferrite in high-strength low-alloy steel using confocal laser scanning microscopy was discussed in terms of nucleation and growth. It is found that acicular ferrite nucleated at dislocations and slip bands in deformed austenite grains introduced by hot deformation in the non-recrystallization austenite region, and then proceeded to grow into an austenite grain boundary. According to an ex-situ EBSD analysis, acicular ferrite had an irregular shape morphology, finer grains with sub-grain boundaries, and higher strain values than those of polygonal ferrite. The fraction of acicular ferrite was affected by the deformation condition and increased with increasing the amount of hot deformation in the non-recrystallization austenite region.

Effects of Coiling Temperature and Carbides Behavior on Stretch-flangeability for 980MPa Hot-rolled Steels (980 MPa급 열연강의 권취온도와 탄화물 거동에 따른 신장플랜지성)

  • Chun, Eun-Joon;Lee, Ju-Seung;Do, Hyeonghyeop;Kim, Seong-Ju;Choi, Yoon-Suk;Park, Yong-Ho;Kang, Namhyun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.7
    • /
    • pp.487-493
    • /
    • 2012
  • To analyze the factors on stretch-flangeability for 980 MPa-grade hot-rolled steels, two types of steels (Fe-Cr and Fe-Mo) were manufactured by hot-rolling. Manufactured steels at the low coiling temperature, such as 400 and $500^{\circ}C$, had poor stretch-flangeability due to un-uniformly distributed carbides and a large deviation of interphase hardness. However, when the coiling temperature was set at $650^{\circ}C$ with Fe-Cr steel, 998 MPa of ultimate tensile strength, 19% of total elongation and 65% of the hole expanding ratio were achieved by microstructural constituents of polygonal ferrite (PF) and granular ferrite (GF) dispersed with fine carbides (<50 nm). Therefore, the material to attain 980 MPa with superior formability was the Fe-Cr steel that was precipitation-hardened in polygonal ferrite and granular ferrite at the coiling temperature $650^{\circ}C$.

Effects of Microstructures on the Toughness of High Heat Input EG Welded Joint of EH36-TM Steel (EH36-TM강의 대입열 EGW 용접부 저온 인성에 미치는 미세 조직의 영향)

  • Choi, Woo-Hyuk;Cho, Sung-Kyu;Choi, Won-Kyu;Ko, Sang-Gi;Han, Jong-Man
    • Journal of Welding and Joining
    • /
    • v.30 no.1
    • /
    • pp.64-71
    • /
    • 2012
  • The characteristics of high heat input (342kJ/cm) EG (Electro Gas Arc) welded joint of EH36-TM steel has been investigated. The weld metal microstructure consisted of fine acicular ferrite (AF), a little volume of polygonal ferrite (PF) and grain boundary ferrite (GBF). Charpy impact test results of the weld metal and heat affected zone (HAZ) met the requirement of classification rule (Min. 34J at $-20^{\circ}C$). In order to evaluate the relationship between the impact toughness property and the grain size of HAZ, the austenite grain size of HAZ was measured. The prior austenite grain size in Fusion line (F.L+0.1 mm) was about $350{\mu}m$. The grain size in F.L+1.5 mm was measured to be less than $30{\mu}m$ and this region was identified as being included in FGHAZ(Fine Grain HAZ). It is seen that as the austenite grain size decreases, the size of GBF, FSP (Ferrite Side Plate) become smaller and the impact toughness of HAZ increases. Therefore, the CGHAZ was considered to be area up to 1.3mm away from the fusion line. Results of TEM replica analysis for a welded joint implied that very small size ($0.8\sim1.2{\mu}m$) oxygen inclusions played a role of forming fine acicular ferrite in the weld metal. A large amount of (Ti, Mn, Al)xOy oxygen inclusions dispersed, and oxides density was measured to be 4,600-5,300 (ea/mm2). During the welding thermal cycle, the area near a fusion line was reheated to temperature exceeding $1400^{\circ}C$. However, the nitrides and carbides were not completely dissolved near the fusion line because of rapid heating and cooling rate. Instead, they might grow during the cooling process. TiC precipitates of about 50 ~ 100nm size dispersed near the fusion line.