• Title/Summary/Keyword: Polyglycerin

Search Result 2, Processing Time 0.016 seconds

Recent Trends in Research of Polyglycerin Fatty Acid Esters (폴리글리세린지방산에스터의 최근 연구동향(제1보))

  • Rang, Moon Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1443-1459
    • /
    • 2019
  • Polyglycerol fatty acid ester nonionic surfactants have been used for a long time in foods and have been suggested as an alternative to the safety problems of PEG based nonionic surfactants. The polyglycerol fatty acid ester surfactants are synthesized by combining a hydrophilic polyglycerin and a lipophilic fatty acid. The hydrophilic polyglycerin is polymerized using glycerin, glycidol, epichlorohydrin, etc. The main issues of the polyglycerol polymerization reaction are to increase the content of the polyglycerol in the form of linear rather than branched or cyclic forms and to narrow the distribution of the degree of polymerization. The method of binding a lipophilic fatty acid group to a hydrophilic polyglycerin includes chemical synthesis such as esterification reaction and enzyme synthesis using lipase enzyme. The main issues of polyglycerin fatty acid ester synthesis are to increase the yield and to control the degree of esterification while reducing side reactions.

Development of W/O/W Multiple Emulsion Formulation Containing Burkholderia gladioli

  • KIM, HWA-JIN;CHO, YOUNG-HEE;BAE, EUN-KYUNG;SHIN, TAEK-SU;CHOI, SUNG-WON;CHOI, KEE-HYUN;PARK, JI-YONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.29-34
    • /
    • 2005
  • W/O/W (water-in-oil-in-water) type multiple emulsion was applied to improve the storage stability of an antagonistic microorganism, Burkholderia gladioli. Encapsulation of microorganism into a W/O/W emulsion was conducted by using a two-step emulsification method. W/O/W emulsion was prepared by the incorporation of B. gladioli into rapeseed oil and the addition of polyglycerin polyriconolate (PGPR) and castor oil polyoxyethylene (COG 25) as the primary and secondary emulsifier, respectively. Microcrystalline cellulose was used as an emulsion stabilizer. To evaluate the usefulness of W/O/W emulsion formulation as a microbial pesticide for controlling the bacterial wilt pathogen (Ralstonia solanacearum), the storage stability and antagonistic activity of emulsion formulation were tested in vitro. The storage stability test revealed that the viability of formulated cells in emulsion was higher than that of unformulated cells in culture broth. At $4^{\circ}C$, the viabilities of formulated cells and unformulated cells at the end of 20 weeks decreased to about 2 and 5 log cycles, respectively. At $37^{\circ}C$, the viability of formulated cells decreased to only 2 log cycles at the end of storage. On the other hand, the viable cells in culture broth were not detected after 13 weeks. In activity test, formulated cells in emulsion were more effective in inhibiting the growth of pathogen than unformulated cells in culture broth. Unformulated cells completely lost their antagonistic activity during storage under similar conditions. The W/O/W multiple emulsion formulation was shown to be useful as the novel liquid formulation for biological control.