• 제목/요약/키워드: Polyethylene terephthalate

Search Result 396, Processing Time 0.025 seconds

Low voltage operating $InGaZnO_4$ thin film transistors using high-k $MgO_{0.3}BST_{0.7}$ gate dielectric (고유전 $MgO_{0.3}BST_{0.7}$ 게이트 절연막을 이용한 $InGaZnO_4$ 기반의 트랜지스터의 저전압 구동 특성 연구)

  • Kim, Dong-Hun;Cho, Nam-Gyu;Chang, Young-Eun;Kim, Ho-Gi;Kim, Il-Doo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.40-40
    • /
    • 2008
  • $InGaZnO_4$ based thin film transistors (TFTs) are of interest for large area and low cost electronics. The TFTs have strong potential for application in flat panel displays and portable electronics due to their high field effect mobility, high on/off current ratios, and high optical transparency. The application of such room temperature processed transistors, however, is often limited by the operation voltage and long-tenn stability. Therefore, attaining an optimum thickness is necessary. We investigated the thickness dependence of a room temperature grown $MgO_{0.3}BST_{0.7}$ composite gate dielectric and an $InGaZnO_4$ (IGZO) active semiconductor on the electrical characteristics of thin film transistors fabricated on a polyethylene terephthalate (PET) substrate. The TFT characteristics were changed markedly with variation of the gate dielectric and semiconductor thickness. The optimum gate dielectric and active semiconductor thickness were 300 nm and 30 nm, respectively. The TFT showed low operating voltage of less than 4 V, field effect mobility of 21.34 cm2/$V{\cdot}s$, an on/off ratio of $8.27\times10^6$, threshold voltage of 2.2 V, and a subthreshold swing of 0.42 V/dec.

  • PDF

Epoxy-based Interconnection Materials and Process Technology Trends for Semiconductor Packaging (반도체 패키징용 에폭시 기반 접합 소재 및 공정 기술 동향)

  • Eom, Y.S.;Choi, K.S.;Choi, G.M.;Jang, K.S.;Joo, J.H.;Lee, C.M.;Moon, S.H.;Moon, J.T.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.1-10
    • /
    • 2020
  • Since the 1960s, semiconductor packaging technology has developed into electrical joining techniques using lead frames or C4 bumps using tin-lead solder compositions based on traditional reflow processes. To meet the demands of a highly integrated semiconductor device, high reliability, high productivity, and an eco-friendly simplified process, packaging technology was required to use new materials and processes such as lead-free solder, epoxy-based non cleaning interconnection material, and laser based high-speed processes. For next generation semiconductor packaging, the study status of two epoxy-based interconnection materials such as fluxing and hybrid underfills along with a laser-assisted bonding process were introduced for fine pitch semiconductor applications. The fluxing underfill is a solvent-free and non-washing epoxy-based material, which combines the underfill role and fluxing function of the Surface Mounting Technology (SMT) process. The hybrid underfill is a mixture of the above fluxing underfill and lead-free solder powder. For low-heat-resistant substrate applications such as polyethylene terephthalate (PET) and high productivity, laser-assisted bonding technology is introduced with two epoxy-based underfill materials. Fluxing and hybrid underfills as next-generation semiconductor packaging materials along with laser-assisted bonding as a new process are expected to play an active role in next-generation large displays and Augmented Reality (AR) and Virtual Reality (VR) markets.

Electromechanical Properties of Conductive MWCNT Film Deposited on Flexible Substrate Affected by Concentration of Dispersing Agent (분산제 농도에 따른 MWCNT 전도성 유연필름의 전기-기계적 특성)

  • HwangBo, Yun;Kang, Yong-Pil;Kim, Jae-Hyun;Kim, Duck-Jong;Lee, Hak-Joo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.517-521
    • /
    • 2012
  • Carbon nanotubes (CNTs) have been regarded as a promising material for the fabrication of flexible conductors such as transparent electrodes, flexible heaters, and transparent speakers. In this study, a multiwalled carbon nanotube (MWCNT) film was deposited on a polyethylene terephthalate (PET) substrate using a spraying technique. MWCNTs were dispersed in water using sodium dodecyl sulfate (SDS). To evaluate the effect of the weight ratio between SDS and MWCNTs on the electromechanical properties of the film, direct tensile tests and optical strain measurement were conducted. It was found that the CNT film hardly affected the mechanical behavior of CNT/PET composite films, while the electrical behavior of the CNT film was strongly affected by the SDS concentration in the CNT film. The electrical resistance of CNT/PET films gradually increased with the strain applied to the PET substrate, even up to a large strain that ruptured the substrate.

Experimental Study on Liquid Desiccant Distribution Characteristics at a Dehumidifier with Extended Surface (확장표면을 적용한 액체식 제습기에서 제습액 분배 특성에 관한 실험적 연구)

  • Lee, Min-Su;Chang, Young-Soo;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.645-649
    • /
    • 2009
  • Liquid desiccant cooling technology can supply cooling by using waste heat and solar heat which are hard to use effectively. For compact and efficient design of a dehumidifier, it is important to sustain sufficient heat and mass transfer surface area for water vapor diffusion from air to liquid desiccant on heat exchanger. In this study, the plate type heat exchanger is adopted which has extended surface, and hydrophilic coating and porous layer coating are adopted to enhance surface wettedness. PP(polypropylene) plate is coated by porous layer and PET(polyethylene terephthalate) non-woven fabric is coated by hydrophilic polymer. These coated surfaces have porous structure, so that falling liquid film spreads widely on the coated surface foaming thin liquid film by capillary force. The temperature of liquid desiccant increases during dehumidification process by latent heat absorption, which leads to loss of dehumidification capacity. Liquid desiccant is cooled by cooling water flowing in plate heat exchanger. On the plate side, the liquid desiccant can be cooled by internal cooling. However the liquid desiccant on extended surface should be moved and cooled at heat exchanger surface. Optimal mixing and distribution of liquid desiccant between extended surface and plate heat exchanger surface is essential design parameter. The experiment has been conducted to verify effective surface treatment and distribution characteristics by measuring wall side flow rate and visualization test. It is observed that hydrophilic and porous layer coating have excellent wettedness, and the distribution can be regulated by adopting holes on extended surface.

  • PDF

The Change of Mechanical Properties of Alkali Hydrolyzed PET Fabric with Tank/Liquor-flow Machine - Bending and Shear Properties - (PET직물의 Tank/Liquor-flow 감량에 의한 역학적 특성변화 -굽힘.전단특성-)

  • 서말용;한선주;김삼수;허만우;박기수;장두상
    • Textile Coloration and Finishing
    • /
    • v.10 no.4
    • /
    • pp.37-44
    • /
    • 1998
  • The purpose of this study was to elucidate the effect of weight loss of polyethylene terephthalate(PET) fabrics on the mechanical properties such as bending and shear. In order to compare the effect of treatment machine on the mechanical properies of treated PET fabrics, PET fabrics were hydrolyzed with NaOH aqueous solution using Tank machine and Liquor flow machine, respectively. The results were as follows : 1. The bending rigidity and shear stiffness of hydrolyzed PET fabric decreased markedly up to about 10% weight loss regardless of treatment machines. At the above 10% weight loss, the variation of these properties is nearly unchanged. In addition, the bending hysteresis and shear hysteresis also showed similar trend. 2. Weft density change of PET fabrics treated with Liquor flow machine decreased by 1pick/inch. It is assumed that this is attributed to the tension during the treatment of Liquor flow machine. On the other hand, the weft density change of PET fabrics treated with Tank machine is scarcely influeneced by the weight loss. While warp density of PET fabrics treated with Liquor flow machine had no change with weight loss, warp density of PET fabrics treated with Tank machine decreased by 6pick/inch due to the tension. 3. The bending rigidity and shear stiffness of PET fabrics hydrolyzed with liquor flow machine slightly higher than with Tank m/c at the above 10% weight loss. It is assumed that this is caused by the increasement of the crossing pressure of warp and weft yarn and contact points of filaments in the yarns. Also, the bending and shear hysteresis of PET fabrics treated with Tank machine were higher than that of liquor flow machine.

  • PDF

The Scattering Property of EVA/SiO2 Composite Film Formed Micro-aggregation Structure for Roll-to-roll Process (Roll-to-roll 적용 가능한 마이크로 응집 구조를 갖는 EVA/SiO2 복합 필름의 산란 특성)

  • Jo, Kuk Hyun;Yang, Jun Yeong;Lee, Si Woo;Park, Eun Kyoung;Choi, Geun Seok;Song, Ki Won;Kim, Hyo Jung
    • Textile Coloration and Finishing
    • /
    • v.30 no.3
    • /
    • pp.190-198
    • /
    • 2018
  • We fabricated high transmission and high scattering poly(ethylene-co-vinyl acetate)(EVA) films embedding $SiO_2$ nanoparticles to improve outcoupling efficiency in organic display. The 800nm diameter $SiO_2$ nanoparticles aggregated and formed $1.56{\mu}m$ (with ${\pm}0.853{\mu}m$ standard deviation) diameter microparticles in EVA. The total transmission of scattering film was 83.3% on Polyethylene terephthalate(PET), which was higher than reference 82.8% PET substrate. The diffuse transmission and haze of the $SiO_2$ embedded EVA film were 76.1% and 91.4%, respectively. The optimized condition was 1:1 weight ratio of $SiO_2$ nanoparticles to EVA in Tetrahydrofuran(THF) solution. When the ratio of $SiO_2$ was larger than 1, the total transmission decreased by the increase in backscattering of light due to high scattering. With the optimized condition, we could succeed to fabricate a large scale film(35m in length) with a roll-to-roll process.

Preparation of Properties of PC/PBT Alloy Using MBS Compatibility (MBS상용화제를 사용한 PC/PET Alloy의 제조와 그 물성)

  • Lee, Yong-Moo;Kang, Doo-Whan
    • Applied Chemistry for Engineering
    • /
    • v.5 no.1
    • /
    • pp.54-62
    • /
    • 1994
  • Bisphenol A polycarbonate(PC) and polyethylene terephthalate(PET) was blended with methylmethacrylate-butadiene-styrene(MBS) copolymer for the improvement of impact resistance strength PC/PET alloy blending with PC more than 15 parts to 100 parts of PET usually have poor compatability, but increased the compatability characteristics of PC/PET alloy prepared by addition of MBS compatabilizer. The compatability of PC and PET using compatabilizer, MBS was determined by measuring the thermal characteristics of Tg difference between PC and PET, and crystallization temperature, Tcc. As the Tg difference becoming narrow to $60^{\circ}C$, and Tcc decreasing to $150^{\circ}C$, the comparability of PC and PET was increased. And also tough rate impact strength to PC/PET alloy using MBS was increased, in case more than 15 parts of PC being blended to PET.

  • PDF

Effects of PEO Additions on the Mechanical and Thermal Proprieties of PLA/PBAT Blends (폴리에틸렌옥사이드가 PLA/PBAT 블렌드 물성에 미치는 영향)

  • Jang, Hyunho;Kwon, Sangwoo;Eom, Yoojun;Yoo, Seungwoo;Park, Su-il
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.26 no.2
    • /
    • pp.93-98
    • /
    • 2020
  • The blends of Poly(lactic acid) (PLA) and Poly(butylene adipate-co-terephthalate) (PBAT) have been recognized as a replacement for commodity plastic films and bags in biodegradable packaging industries. The purpose of this study is to identify changes in the thermal and mechanical properties of PLA/PBAT blends with the addition of poly(ethylene oxide)(PEO). PLA (80%) and PBAT (20%) were melt mixed with 0 to 10 phr of PEO and processed using a hot press. The addition of PEO into PLA/PBAT increased the elongation at break and improved thermal stability. With PEO addition, two melting temperature (Tm) peaks of PLA/PBAT merged into one peak showing improved miscibility. The result of this study showed that the addition of PEO increased the ductility and thermal stability of PLA/PBAT blends.

The composition control of ITO/PET by Plasma Emission Monitors (PEM을 이용한 ITO/PET film 조성 제어)

  • 한세진;김용한;김영환;이택동
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.213-213
    • /
    • 1999
  • 현재 LCD용 기판재료는 ITO/glass를 전극으로 사용하고 있다. 그러나 유리기판은 무겁고 깨지기 쉽기 때문에 사용상 곤란한 점이 많다. 최근 flexible하고 가공성 및 생산성이 우수한 플라스틱한 ITO를 성막하여 EL용, Touch panel, plastic LCD용 사용하려는 시도로, roll-to-roll 연속 스퍼터링에 의한 ITO성막공정에 대한 연구가 최근 활발하게 이루어지고 있다. 폴리머는 유리에 비해 Tg 온도가 낮고, 기판으로부터의 수분 및 여러 종류의 가스방출이 심하기 때문에 유리와는 달리 ITO막의 제조에 있어 큰 차이점이 있다. 따라서, 폴리머에 반응성 스퍼터링을 하기 위해서는 표면처리가 중요한 변수가 되며, roll to roll sputter로 ITO 필름을 얻기 위해서는 폭과 길이 방향으로 균일한 막을 얻는 것이 중요하다. 두께 75$\mu\textrm{m}$, 폭 190mm, 길이 400m로 권취된 광학용 Polyethylene terephthalate(PET:Tg:8$0^{\circ}C$)위에 In-10%Sn의 합금타겟과 Unipolar pulsed DC power supply를 사용하여 반응성 마그네트론 스퍼터링 방법으로 0.2m/min의 속도로 연속 스퍼터링 하였다. PET를 Ar/O2 혼합가스로 플라즈마 전처리를 한 후, AFM, XPS를 이용하여 효과를 분석을 하였고, 성막전에 가스방출을 막기 위해 TiO를 코팅하였다. Pilot 연속 생산공정에서 재현성을 위해 PEM(Plasma Emission Monitor)의 optical emission spectroscopy를 이용, 금속과 산화물의 천이구역에서 sprtter된 I/Sn 이온과 산소 이온의 반응에 의한 최적의 플라즈마의 강도값을 입력하여 플라즈마의 radiation을 검출하고, 스퍼터링 공정중 실질적인 in-situ 정보로 이용하였다. PEM을 통하여 In/Sn의 플라즈마 강도변화를 조사하였다. 초기 In/Sn의 플라즈마 강도(intensity)는 강도를 100하여, 산소를 주입한 결과, plasma intensity가 35 줄어들었고, 이때 우수한 ITO 박막을 얻을 수 있었다. Pulsed DC power를 사용하여 아크 현상을 방지하였다. PET 상에 coating 된 ITO 박막의 표면저항과 광투과도는 4-point prove와 spectrophotometer를 이용하여 분석하였고, AES로 박막의 두께에 따른 성분비를 확인하였다. ITO 박막의 광투과도는 산소의 유량과 sputter 된 In/Sn ion의 plasma emission peak에 따라 72%-92%까지 변화하였으며, 저항은 37$\Omega$/$\square$ 이상을 나타내었다. 박막의 Sn/In atomic ratio는 0.12, O/In의 비율은 In2O3의 화학양론적 비율인 1.5보다 작은 1.3을 나타내었다.

  • PDF

Flexible and Transparent CuO/Cu/CuO Electrodes Grown on Flexible PET Substrate by Continuous Roll-to-roll Sputtering for Touch Screen Panels Cells

  • Kim, Dong-Ju;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.217.2-217.2
    • /
    • 2014
  • We prepared a flexible and transparent CuO/Cu/CuO multilayer electrodes on a polyethylene terephthalate (PET) substrate using a specially designed roll-to-roll sputtering system at room temperature for GFF-type touch screen panels (TSPs). By the continuous roll-to-roll sputtering of the CuO and Cu layer, we fabricated a flexible CuO(150nm)/Cu(150nm)/CuO(150nm) multilayer electrodes with a sheet resistance of $0.289{\Omega}/square$, resistivity of $5.991{\times}10^{-23}{\Omega}-cm$, at the optimized condition without breaking the vacuum. To investigate the feasibility of the CuO/Cu/CuO multilayer as a transparent electrode for GFF-type TSPs, we fabricated simple GFF-type TSPs using the diamond patterned CuO/Cu/CuO electrode on PET substrate as function of mesh line width. Using diamond patterned CuO/Cu/CuO electrode of mesh line $5{\mu}m$ with sheet resistance of 38 Ohm/square, optical transmittance of 90% at 550 nm and an average transmittance of 89% at wavelength range from 380 to 780 nm, we successfully demonstrated GFF-type touch panel screens (TPSs). The successful operation of GFF-type TPSs with CuO/Cu/CuO multilayer electrodes indicates that the CuO/Cu/CuO multilayer is a promising transparent electrode for large-area capacitive-type TPSs due to its low sheet resistance and high transparency.

  • PDF