• Title/Summary/Keyword: Polyethylene terephthalate(PET)

Search Result 337, Processing Time 0.028 seconds

Synthesis and Evaluation of Superhydrophobic ODA/PDMS Dip Coating on PET for Liquid-Solid Contact Electrification (액체-고체 접촉대전을 위한 PET 기판 기반 ODA/PDMS 딥 코팅 제조 및 평가)

  • Park, Sunyoung;Kang, Hyungyu;Byun, Doyoung;Cho, Dae-Hyun
    • Tribology and Lubricants
    • /
    • v.37 no.2
    • /
    • pp.71-76
    • /
    • 2021
  • As opposed to using fossil fuels, we need to use eco-friendly resources such as sunlight, raindrops and wind to produce electricity and combat environmental pollution. A triboelectric nanogenerator (TENG) is a device that converts mechanical energy into electricity by inducing repetitive contact and separation of two dissimilar materials. During the contact and separation processes, electron flow occurs owing to a change in electric potential of the contacting surface caused by contact electrification and electrostatic induction mechanisms. A solid-solid contact TENG is widely known, but it is possible to generate electricity via liquid-solid contact. Therefore, by designing a hydrophobic TENG, we can gather electricity from raindrop energy in a feasible manner. To fabricate the superhydrophobic surface of TENGs, we employ a dip coating technique to synthesize an octadecylamine (ODA)- and polydimethylsiloxane (PDMS)-based coating on polyethylene terephthalate (PET). The synthesized coating exhibits superhydrophobicity with a contact angle greater than 150° and generates a current of 2.2 ㎂/L while water droplets fall onto it continuously. Hence, we prepare a box-type TENG, with the ODA/PDMS coating deposited on the inside, and place a 1.5 mL water droplet into it. Resultantly, we confirm that the induced vibration causes continuous impacts between the ODA/PDMS coating and the water, generating approximately 100 pA for each impact.

Evaluation of Non-slip for Vehicle's Environmental Sub-Mat (자동차용 친환경적인 Sub-Mat의 Non-Slip기능 평가)

  • Eo, Yu-Rim;Kim, Ki-Tai;Kim, Joo-Yong;Kim, Young-Su
    • Science of Emotion and Sensibility
    • /
    • v.15 no.2
    • /
    • pp.177-182
    • /
    • 2012
  • Automotive sub-mat carpet for convenience and comfort of floor administration is additional supplemented floor mat. Sub Mat Backing of the current vehicle's materials reclaimed rubber, PVC, etc. are used, but secondary rubber and PVC Backing have bad sound absorption. Also rubber is heavy too. Contact surfaces between PET staple fiber, PET non-woven, PVC backing and car's floor carpet was measured the coefficient of friction for each sub-mat's non-slip evaluation. A surface of PET non-woven sub-mat has the highest coefficient of friction. Each of sample was observed by optical microscope the contact surfaces before and after. Contact surfaces of PET staple fiber sub-mat was changed increasingly to non-woven. This fact is shown that the sub-mat would be tangled between its contact surface and top of the floor carpet. It is expected to be highly non-slip. In case of PET non-woven sub-mat had not different for contact surfaces between before and after. And PVC backing was shown lower non-slip than other samples. The result of optical microscope and coefficient of friction is seems to be related.

  • PDF

Effects of oxygen partial pressure on the properties of indium tin oxide film on PET substrates by RF magnetron sputtering (RF 마그네트론 스퍼터링법에 의해 PET 기판 위에 증착된 ITO 박막의 특성에 대한 산소 분압의 영향)

  • Kim, Seon Tae;Kim, Tae Gyu;Cho, Hyun;Kim, Jin Kon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.252-255
    • /
    • 2014
  • Indium tin oxide (ITO) films with various oxygen partial pressure from 0 to $6{\times}10^{-5}$ Pa were prepared onto polyethylene terephthalate (PET) using RF magnetron sputtering at room temperature. The structural, electrical and optical properties of the grown ITO films were investigated as a function of the oxygen partial pressure. The amorphous nature of the ITO films was dominant at the partial pressure below $1{\times}10^{-5}$ Pa and the degree of crystallinity increased as the oxygen concentration increased further. This structural change comes with the increased carrier concentration and reduction of the electrical resistivity down to $9.8{\times}10^{-4}{\Omega}{\cdot}cm$. The average transmittance (at 400~800 nm) of the ITO deposited on the PET substrates increased as the oxygen partial pressure increased and transmittance above 80 % was achieved with the partial pressure of $4{\times}10^{-5}$ Pa. The results show that the choice of optimal oxygen partial pressure can present improved film crystallinity, the increased carrier concentration, and the enhancement in the electrical conductivity.

Interfacial Control of Multi-functional CNT and ITO/PET Nanocomposites having Self-Sensing and Transparency (자체-감지능 및 광투과도를 지닌 CNT 및 ITO/PET 다기능성 나노복합소재의 계면 조절 연구)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Park, Joung-Man
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Transparent and conductive carbon nanotube on polyethylene terephthalate (PET) were prepared by dip-coating method for self-sensing multi-functional nanocomposites. The changes in the electrical and optical properties of CNT coating mainly depended on the number of dip-coating, concentration of CNT solution. Consequently, the surface resistance and transmittance of CNT coating were sensitively controlled by the processing parameters. Surface resistance of CNT coating was measured using four-point method, and surface resistance of coated CNT could be better calculated by using the dual configuration method. Optical transmittance of PET film with CNT coating was evaluated using UV spectrum. Surface properties of coated CNT investigated by wettability test via static and dynamic contact angle measurement were consistent with each other. As dip-coating number increased, surface resistance of coated CNT decreased seriously, whereas the transmittance exhibited little lower due to the thicker CNT networks layer. Interfacial microfailure properties were investigated for CNT and indium tin oxide (ITO) coatings on PET substrates by electrical resistance measurement under cyclic loading fatigue test. CNT with high aspect ratio exhibited no change in surface resistance up to 2000 cyclic loading, whereas ITO with brittle nature showed a linear increase of surface resistance up to 1000 cyclic loading and then exhibited the level-off due to reduced electrical contact points based on occurrence of many micro-cracks.

Influence of Temperature and Affinity of Disperse Dye on Dyeing of PET(Polyethylene Terephthalate) Microfiber (PET 초극세사 염색에서 분산염료의 친화력과 온도 의존성)

  • Lee, Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.532-540
    • /
    • 2019
  • PET microfibers with various diameters (0.5, 0.2, 0.06, and 0.01 dpf) were dyed with a dispersed dye (C.I. Disperse Blue 56) at various temperatures. The dyeing process was conducted under infinite dyebath conditions at constant temperatures. The effects of the dyeing temperature and diameter on the partition coefficient, affinity, and diffusion coefficient of disperse dyes were studied. The curve of isotherms was fitted well to Nernst-type model in a large range of initial dye concentrations. At the same temperature, the partition coefficient and affinity decreased with increasing sample diameter due to the increase in surface area. At all deniers, the partition coefficient and affinity decreased with increasing temperature because the dyeing process is an exothermic reaction. In addition, the decrease in radius of the sample gives rise to a decrease in the heat of dyeing. The fine diameter of the sample resulted in an increased surface area but decreased space between the microfibers. Consequently, decreasing the diameter of the microfibers leads to a decrease in the diffusion coefficient. At the same diameter, the diffusion coefficient increased with increasing temperature because of rapid dye movement and the large free volume of the sample inside. In addition, thermal dependence of the diffusion coefficient increased when the diameter of the sample increased.

Process Optimization for the Industrialization of Transparent Conducting Film (투명 전도막의 산업화를 위한 공정 최적화)

  • Nam, Hyeon-bin;Choi, Yo-seok;Kim, In-su;Kim, Gyung-jun;Park, Seong-su;Lee, Ja Hyun
    • Industry Promotion Research
    • /
    • v.9 no.1
    • /
    • pp.21-29
    • /
    • 2024
  • In the rapidly advancing information society, electronic devices, including smartphones and tablets, are increasingly digitized and equipped with high-performance features such as flexible displays. This study focused on optimizing the manufacturing process for Transparent Conductive Films (TCF) by using the cost-effective conductive polymer PEDOT and transparent substrate PET as alternatives to expensive materials in flexible display technology. The variables considered are production speed (m/min), coating maximum temperature (℃), and PEDOT supply speed (rpm), with surface resistivity (Ω/□) as the response parameter, using Response Surface Methodology (RSM). Optimization results indicate the ideal conditions for production: a speed of 22.16 m/min, coating temperature of 125.28℃, and PEDOT supply at 522.79 rpm. Statistical analysis validates the reliability of the results (F value: 18.37, P-value: < 0.0001, R2: 0.9430). Under optimal conditions, the predicted surface resistivity is 145.75 Ω/□, closely aligned with the experimental value of 142.97 Ω/□. Applying these findings to mass production processes is expected to enhance production yields and decrease defect rates compared to current practices. This research provides valuable insights for the advancement of flexible display manufacturing.

Ultrafast and flexible UV photodetector based on NiO

  • Kim, Hong-sik;Patel, Malkeshkumar;Kim, Hyunki;Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.389.2-389.2
    • /
    • 2016
  • The flexible solid state device has been widely studied as portable and wearable device applications such as display, sensor and curved circuits. A zero-bias operation without any external power consumption is a highly-demanding feature of semiconductor devices, including optical communication, environment monitoring and digital imaging applications. Moreover, the flexibility of device would give the degree of freedom of transparent electronics. Functional and transparent abrupt p/n junction device has been realized by combining of p-type NiO and n-type ZnO metal oxide semiconductors. The use of a plastic polyethylene terephthalate (PET) film substrate spontaneously allows the flexible feature of the devices. The functional design of p-NiO/n-ZnO metal oxide device provides a high rectifying ratio of 189 to ensure the quality junction quality. This all transparent metal oxide device can be operated without external power supply. The flexible p-NiO/n-ZnO device exhibit substantial photodetection performances of quick response time of $68{\mu}s$. We may suggest an efficient design scheme of flexible and functional metal oxide-based transparent electronics.

  • PDF

Evaluation of Piezoelectric Properties in Pb(Zr1Ti)O3-PVDF Composites for Thick Film Speaker Application (후막 스피커 응용을 위한 Pb(Zr1Ti)O3-PVDF 복합체의 압전 특성 평가)

  • Son Yong-Ho;Kim Sung-Jin;Kim Young-Min;Jeong Joon-Seok;Ryu Sung-Lim;Kweon Soon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.966-970
    • /
    • 2006
  • We reported on characteristics of the piezoelectric ceramic-polymer composite for the application of the thick-film speaker. The PVDF-PZT composites were fabricated to incorporate the advantages of both ceramic and polymer with various mixing ratios by 3-roll mill mixer. The composite solutions were coated by the conventional screen-printing method on ITO electrode coated PET (Polyethylene terephthalate) polymer film. After depositing the top-electrode of silver-paste, 4 kV/mm of DC field was applied at $120^{\circ}C$ for 30 min to poling the composite films. The value of $d_{33}$ (piezoelectric charge constant) was increased when the PZT weight percent was increased. The maximum value of the $d_{33}$ was 24 pC/N at 70 wt% PZT. But the $g{33}$ (piezoelectric voltage constant) showed the maximum value of $32mV{\cdot}m/N$ at 65 wt% of PZT powder. The SPL (sound pressure level) of the speaker fabricated with the 65:35 composite film was about 68 dB at 1 kHz.

The adhesion enhancements of Cu metal thin film on plastic substrate by plasma technology (고품질 Cu 박막 형성을 위한 폴리머 기판상 표면처리 기술 연구)

  • Byeon, Eun-Yeon;Choe, Du-Ho;Kim, Do-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.148-148
    • /
    • 2016
  • 디스플레이 시장이 rigid에서 flexible로 변화하기 시작하면서 유연 투명전극 소재에 대한 수요가 증가하고 있다. 투명전극으로 대표되는 Indium Tin Oxide(ITO)는 고투과 저저항의 장점을 가지지만 유연성이 떨어져 이를 대체 할 투명전극 소재로 Metal mesh, Ag nano-wire, CNT, Graphene, Conductive polymer 등에 대한 응용 연구가 활발히 진행되고 있다. 본 연구에서는 Metal mesh 용 Cu thin film 형성을 위해 플라즈마 표면처리 기술로 플라스틱 기판과 Cu 박막 사이의 밀착력을 향상시키고자 공정 연구를 수행하였다. 고품질의 Cu thin film 제작을 위해 양산용 roll to roll 장비를 이용하였고, 선형이온소스를 적용하여 플라즈마 표면처리를 수행하였다. 이후 마그네트론 스퍼터링을 통해 Ni buffer layer 및 Cu 박막 증착 공정을 in-situ로 진행하였다. 이러한 공정을 통해 제작한 Cu thin film의 밀착력을 평가하기 위해 cross cut test(ASTM D3359)를 수행하였다. 그 결과 플라스틱 기판과 Cu 금속 박막 사이의 밀착력이 0B에서 5B까지 향상된 것을 확인하였고, 플라즈마 표면처리 공정을 통해서 저항 또한 감소되는 결과를 얻을 수 있었다. 본 연구를 통해 polyethylene terephthalate(PET)뿐만 아니라 polyimide(PI) 기판 상에서도 플라즈마 표면처리를 통해 금속 박막의 밀착력이 향상되는 결과를 확인하였으며, flexible copper clad laminate (FCCL) 같은 유연 정보 소자 분야에 응용 가능할 것으로 기대된다.

  • PDF

Fabrication of a Silicon Nanostructure Array Embedded in a Polymer Film by using a Transfer Method (전사방법을 이용한 폴리머 필름에 내재된 실리콘 나노구조물 어레이 제작)

  • Shin, Hocheol;Lee, Dong-Ki;Cho, Younghak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • This paper presents a silicon nanostructure array embedded in a polymer film. The silicon nanostructure array was fabricated by using basic microelectromechanical systems (MEMS) processes such as photolithography, reactive ion etching, and anisotropic KOH wet etching. The fabricated silicon nanostructure array was transferred into polymer substrates such as polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polycarbonate (PC) through the hot-embossing process. In order to determine the transfer conditions under which the silicon nanostructures do not fracture, hot-embossing experiments were performed at various temperatures, pressures, and pressing times. Transfer was successfully achieved with a pressure of 1 MPa and a temperature higher than the transition temperature for the three types of polymer substrates. The transferred silicon nanostructure array was electrically evaluated through measurements with a semiconductor parameter analyzer (SPA).