• Title/Summary/Keyword: Polyethylene fiber

Search Result 268, Processing Time 0.021 seconds

Effect of Reinforcing Fiber Types on Lap Splice Performance of High Performance Fiber Reinforced Cementitious Composite(HPFRCC) (보강 섬유 종류에 따른 고인성 시멘트 복합체내에서 철근의 겹침 이음 성능)

  • Jeon, Esther;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.153-161
    • /
    • 2007
  • This paper investigates the lap splice performance of structural steel bars embedded in high performance fiber reinforced cementitious composite(HPFRCC) with various matrix ductilities. Matrix ductility is governed fiber type and fiber volume fraction. Fiber types were polypropylene(PP), polyethylene(PE) and hybrid fiber[polyethylene fiber+steel cord(PE+SC)]. The lap splice length$(l_d)$ was calculated according to the relevant ACI code requirements for reinforcing bars in normal concrete. As the result of tests, lap splice strength of HPFRCC using PE1.5 and hybrid fiber increased by up to $82{\sim}91$ percent more than that of concrete. Splice strength and energy absorption capacity of PE0.75+SC0.75 or PE1.5(fiber volume fraction 1.5%) specimen increased more than that of PP2.0(fiber volume fraction 2.0%) specimen. Therefore lap splice performance depends on fiber tensile strength and Young's modulus more than fiber volume fraction. Also, HPFRCC appear multiple crack and ductile postpeak behavior due to bridging of fiber in cementitious composite.

Structural Behavior of Fiber Reinforced Concrete Mixed with Recycled PET Fiber (재생 PET 섬유가 혼입된 섬유 보강 콘크리트의 구조거동)

  • Kim, Sung Bae;Kim, Hyun Young;Yi, Na Hyun;Kim, Jang-Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.543-550
    • /
    • 2009
  • This study was performed to prove the possibility of utilizing short plastic fibers made for recycled polyethylene terephthalate (RPET) as a structural material. In order to verify the capacity of RPET fiber, it was compared with polypropylene (PP) fiber, most widely used short synthetic fiber, for fiber volume fraction of 0%, 0.5%, 0.75%, and 1.0%. To measure material properties such as compressive strength, split tensile strength, appropriate tests were performed. Also, to measure the strength and ductility capacities of reinforced concrete (RC) member casted with RPET fiber added concrete, flexural test was performed on RC beams. The results showed that compressive strength decreased, as fiber volume fraction increased. These trends are similarly observed in the tests of PP fiber added concrete specimens. Split cylinder tensile strength of RPET fiber reinforced concrete increased slightly as fiber volume fraction increased. For structural member performance, ultimate strength, relative ductility and energy absorption of RPET added RC beam are significantly larger than OPC specimen. Also, the results showed that ultimate flexural strength and ductility both increased, as fiber volume fraction increased. These trends are similarly observed in the tests of PP fiber added concrete specimens. The study results indicate that RPET fiber can be used as an effective additional reinforcing material in concrete members.

Evaluation on Weight Loss of Spalling Control Fiber by Heating Rate (폭렬저감을 위한 섬유의 가열속도에 따른 중량감소평가)

  • Yu, Sung-Il;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Yoon, Min-Ho;Lee, Young-Wook;Kim, Hong-Seop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.32-33
    • /
    • 2014
  • In this study, evaluation on weight loss properties of spalling control fiber with heating rates has been conducted. For evaluation of this study, 3types of organic fibers(Polyethylene, Polypropylene, Nylon) are used as spaling control fiber. Also, to evaluate the effect of heating rate to spallin control fiber, heating rates are set as 10, 25℃/min. As a result, the start time of weight loss of fiber with various heating rate was delayed as heating rate was increased.

  • PDF

Crystal and Electric Breakdowm Characteristic of High-Density Polyethylene (고밀도 폴리에틸렌의 결정과 절연파괴 특성 연구)

  • 김석기;한상옥;박강식;신동국;김병준;김종석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.129-131
    • /
    • 1995
  • In order to investigated the effects of crystal stucture in electrical breakdown of plyethylene film, Low molecular materials in polyethylene are removed by the method as follow Polyethylene was dissolved in xylene and filtered through a glass fiber filter, And then, a polyethyene thin films of thickness 0.4~1.4$\mu\textrm{m}$ are prepared with heat treatment from solution casting. To evaluate the performance of PE film. Electrical breakdown of PE film as measured on M(Al)-I(PE)-M(Al) systemes.

  • PDF

Conjugate Spun of Polyethylene Terephthalate Resin Modified with 1,4-Cyclohexanedimethanol

  • Bang, Ho-Ju;Kim, Hak-Yong;Jin, Fan-Long;Woo, Je-Wan;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.541-546
    • /
    • 2011
  • In this study, conjugate fibers were prepared from 1,4-cyclohexanedimethanol-modified polyethylene terephthalate (PET) resin using side by side conjugate spinning, sea-island type conjugate spinning, and split type conjugate spinning methods, and the properties of the conjugate fibers were investigated via several techniques. When viscosity increased, the tenacity of side by side conjugate fibers was increased, whereas elongation decreased. The sea-island conjugate fibers showed lower weight loss and surface color difference (K/S) values relative to that of regular PET fibers at the same conditions. The SEM results indicate that orange type spilt readily produced at a temperature range of 120 - 140$^{\circ}C$.

Compatibilization of Immiscible Poly(l-lactide) and Low Density Polyethylene Blends

  • Kim Young Fil;Choi Chang Nam;Kim Young Dae;Lee Ki Young;Lee Moo Sung
    • Fibers and Polymers
    • /
    • v.5 no.4
    • /
    • pp.270-274
    • /
    • 2004
  • Blends of poly(l-lactide) (PLA) and low density polyethylene (LDPE) were prepared by melt mixing in order to improve the brittleness of PLA. A reactive compatibilizer with glycidyl methacrylate (GMA), PE-GMA, was required as a compatibilizer due to the immiscibility between PLA and LDPE. It contributes to reduce the domain size of dispersed phase and enhance the tensile properties of PLA/LDPE blends, especially for PLA matrix blends. A reaction product between PLA and PE-GMA, which was formed during melt-mixing and considered to act as a reactive compatibilizer, was characterized using $ ^1H-NMR$ spectroscopy.

Evaluation on Rear Fracture Reduction and Crack Properties of Cement Composites with High-Velocity Projectile Impact by Fiber Types (섬유 종류에 따른 시멘트복합체의 고속 비상체 충격에 대한 배면파괴저감 및 균열특성 평가)

  • Han, Sang-Hyu;Kim, Gyu-Yong;Kim, Hong-Seop;Kim, Jung-Hyun;Nam, Jeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.157-167
    • /
    • 2015
  • Cement composites subjected to high-velocity projectile shows local failure and it can be suppressed by improvement of flexural toughness with reinforcement of fiber. Therefore, researches on impact resistance performance of cement composites are in progress and a number of types of fiber reinforcement are being developed. Since bonding properties of fiber with matrix, specific surface area and numbers of fiber are different by fiber reinforcement type, mechanical properties of fiber reinforced cement composites and improvement of impact resistance performance need to be considered. In this study, improvement of flexural toughness and failure reduction effect by impact of high-velocity projectile have been evaluated according to fiber type by mixing steel fiber, polyamide, nylon and polyethylene which are have different shape and mechanical properties. As results, flexural toughness was improved by redistribution of stress and crack prevention with bridge effect of reinforced fibers, and scabbing by high-velocity impact was suppressed. Since it is possible to decrease scabbing limit thickness from impact energy, thickness can be thinner when it is applied to protection. Scabbing of steel fiber reinforced cement composites was occurred and it was observed that desquamation of partial fragment was suppressed by adhesion between fiber and matrix. Scabbing by high-velocity impact of synthetic fiber reinforced cement composites was decreased by microcrack, impact wave neutralization and energy dispersion with a large number of fibers.

Mechanical behavior and chloride resistance of cementitious composites with PE and steel fiber

  • Liao, Qiao;Guo, Zhen-wen;Duan, Xin-zhi;Yu, Jiang-tao;Liu, Ke-ke;Dong, Fang-yuan
    • Advances in concrete construction
    • /
    • v.12 no.6
    • /
    • pp.451-459
    • /
    • 2021
  • The mechanical behaviors and chloride resistance performance of fiber reinforced cementitious composites (FRCC) with hybrid polyethylene (PE) and steel fiber (in total 2% by volume) were investigated. Based on micro-mechanics and fracture mechanics, the reason why the tensile strain capacity of FRCC changed obviously was obtained. Besides, the effects of the total surface area of fiber in FRCC on compressive strength and chloride content were clarified. It is found that the improvement of the tensile strain capacity of FRCC with hybrid fiber is attributed to the growth of strain-hardening performance index (the ratio of complementary energy to crack tip toughness). As the total surface area of fiber related with the interfacial transition zone (ITZ) between fiber and matrix increases, compressive strength decreases obviously. Since the total surface area of fiber is small, the chloride resistance performance of FRCC with hybrid PE and steel fiber is better than that of FRCC containing only PE fiber.

High Performance Fiber Reinforced Cement Composites with Innovative Slip Hardending Twisted Steel Fibers

  • Kim, Dong-Joo;Naaman, Antoine E.;El-Tawil, Sherif
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.2
    • /
    • pp.119-126
    • /
    • 2009
  • This paper provides a brief summary of the performance of an innovative slip hardening twisted steel fiber in comparison with other fibers including straight steel smooth fiber, high strength steel hooked fiber, SPECTRA (high molecular weight polyethylene) fiber and PVA fiber. First the pull-out of a single fiber is compared under static loading conditions, and slip rate-sensitivity is evaluated. The unique large slip capacity of T-fiber during pullout is based on its untwisting fiber pullout mechanism, which leads to high equivalent bond strength and composites with high ductility. Due to this large slip capacity a smaller amount of T-fibers is needed to obtain strain hardening tensile behavior of fiber reinforced cementitious composites. Second, the performance of different composites using T-fibers and other fibers subjected to tensile and flexural loadings is described and compared. Third, strain rate effect on the behavior of composites reinforced with different types and amounts of fibers is presented to clarify the potential application of HPFRCC for seismic, impact and blast loadings.

Manufacture of Soluble Micro-fiber and Low Melting Polymer for Interior Synthetic Leather (인테리어용 인조가죽을 위한 용출형 극세사와 저온 융착사의 제조)

  • Ahn, Young-Moo
    • Korean Journal of Human Ecology
    • /
    • v.12 no.4
    • /
    • pp.529-537
    • /
    • 2003
  • This study was conducted to manufacture the soluble micro-fiber and to synthesize low melting polymer for the interior fabric not to use the polyurethane resin causing some problems. Low melting polyester for weft yarn was introduced by adding 30-40 mol% ratio of isophthalic acid to a main chain of polyethylene terephthalate to decrease the melting temperature up to heat setting temperature. Micro-fiber for warp yarn consisted of both soluble and insoluble components with multi-layered structure. When the soluble micro-fiber was treated by alkaline hydrolysis with 3-5% concentration of NaOH, it showed the turning point at 28% weight loss since soluble polyester was hydrolyzed approximate five times faster than regular polyester.

  • PDF