• 제목/요약/키워드: Polyethylene fiber

Search Result 268, Processing Time 0.032 seconds

The Effects of Polar Compounds on the Rate of Dye Exhaustion in Solvent Dyeing (용제염색에서 극상 화합물이 염착속도에 미치는 영향)

  • 이대수;안태환
    • Textile Coloration and Finishing
    • /
    • v.2 no.1
    • /
    • pp.21-30
    • /
    • 1990
  • In order to obtain high dye uptake initially, polyethylene terephthalate (PET) filaments were dyed with C.I.Disperse Orange 3 and Red 1 in mixed solvents of tetrachloroethylene acidic solvent, ethyl alcohol and tetrachloroethylene basic solvent, DMF. The dyeing behavior in the mixed solvent of tetrachloroethylene and basic solvent, DMF, the initial uptake of disperse dyes increased rapidly. The shrinkage of PET increased when the solubility parameter values of PET fiber and mixed solvent approached graduately.

  • PDF

A study on performance evaluation of fiber reinforced concrete using PET fiber reinforcement (PET 섬유 보강재를 사용한 섬유 보강 콘크리트의 성능 평가에 관한 연구)

  • Ri-On Oh;Yong-Sun Ryu;Chan-Gi Park;Sung-Ki Park
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.4
    • /
    • pp.261-283
    • /
    • 2023
  • This study aimed to review the performance stability of PET (Polyethylene terephthalate) fiber reinforcing materials among the synthetic fiber types for which the application of performance reinforcing materials to fiber-reinforced concrete is being reviewed by examining short-term and long-term performance changes. To this end, the residual performance was analyzed after exposing the PET fiber to an acid/alkali environment, and the flexural strength and equivalent flexural strength of the PET fiber-reinforced concrete mixture by age were analyzed, and the surface of the PET fiber collected from the concrete specimen was examined using a scanning microscope (SEM). The changes in were analyzed. As a result of the acid/alkali environment exposure test of PET fiber, the strength retention rate was 83.4~96.4% in acidic environment and 42.4~97.9% in alkaline environment. It was confirmed that the strength retention rate of the fiber itself significantly decreased when exposed to high-temperature strong alkali conditions, and the strength retention rate increased in the finished yarn coated with epoxy. In the test results of the flexural strength and equivalent flexural strength of the PET fiber-reinforced concrete mixture, no reduction in flexural strength was found, and the equivalent flexural strength result also did not show any degradation in performance as a fiber reinforcement. Even in the SEM analysis results, no surface damage or cross-sectional change of the PET reinforcing fibers was observed. These results mean that no damage or cross-section reduction of PET reinforcing fibers occurs in cement concrete environments even when fiber-reinforced concrete is exposed to high temperatures in the early stage or depending on age, and the strength of PET fibers decreases in cement concrete environments. The impact is judged to be of no concern. As the flexural strength and equivalent flexural strength according to age were also stably expressed, it could be seen that performance degradation due to hydrolysis, which is a concern due to the use of PET fiber reinforcing materials, did not occur, and it was confirmed that stable residual strength retention characteristics were exhibited.

Processability of Bio-composites Applied Polyolefin to Recycled Fiberboard Flour (Polyolefin계 고분자에 섬유판 가공 부산물을 적용한 환경 친화형 바이오복합재의 가공성)

  • Choi, Seung-Woo;Kim, Hee-Soo;Lee, Byoung-Ho;Kim, Hyun-Joong;Ahn, Sye-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.6 s.134
    • /
    • pp.55-62
    • /
    • 2005
  • This study was conducted to evaluate the application of a bio-composite made by the addition recycled fiber board flour as filler. Recycled fiber board (high density fiber board, HDF) flour was added to polyolefin polymer low density polyethylene (LDPE) and polypropylene (PP) for the preparation of bio-composite materials. The mechanical properties and processability of the recycled HDF flour filled LDPE and recycled HDF flour filled PP bio-composites were then measured and compared to those of wood flour (WF) and rice-husk flour (RHF) filled LDPE and PP bio-composites, respectively. The tensile and impact strengths of the recycled HDF flour filled LDPE and PP bio-composites had similar mechanical properties to those of the WF and RHF filled LDPE and PP bio-composites. To measure the processability, torques of the bio-composites were also measured. The torques of the HDF flour filled LDPE and PP bio-composites were lower than those of the WF and RHF filled polyolefin (PP and LDPE) bio-composites with a filler loading of 30 wt.%. This result showed definite processability, which was not related with the distribution of the particle size of the material added. The recycled fiber board flour filled bio-composites showed applicability as substitutes for the bio-composites currently used in the bio-composites industry.

Evaluation on the Impact Resistant Performance of Fiber Reinforced Concrete by High-Velocity Projectile and Contacted Explosion (고속비상체 충돌 및 접촉폭발에 의한 섬유보강 콘크리트의 내충격 성능 평가)

  • Nam, Jeong-Soo;Kim, Hong-Seop;Lee, In-Cheol;Miyauchi, Hiroyuki;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.107-114
    • /
    • 2013
  • In this study we experimentally evaluated an impact resistant performance of fiber reinforced concrete in the moment of explosion by high-velocity projectile with emulsion explosive. To assess the impact resistance, we conducted the impact test of high-velocity projectile which reaches an impact speed of 350 m/s and the experiment of contact exploding emulsion explosive. As a result, bending and tensile performance depending on type of PVA, PE fiber (polyvinyl alcohol fiber, polyethylene fiber) and steel fiber affects destruction of rear side in the form of spalling. Destroying the backside of the concrete compressive strength compared to suppress the bending and tensile performance is affected. In addition, the experiment shows that the destruction patterns of concrete specimen producted by high velocity impact and contact explosion are significantly similar. Therefore, it is possible to predict the destruction patterns of specimens in the situation of contact explosion by high-velocity projectile.

Impact Resistance Properties of High Strength Fiber-Reinforced Composites According to Types and Amounts of Fibers (섬유 종류 및 혼입량에 따른 고강도 섬유보강 복합재료의 충돌 저항 성능)

  • Choi, Jeong-Il;Park, Se-Eon;Kim, Gyu-Yong;Lee, Sang-Kyu;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.349-355
    • /
    • 2020
  • The purpose of this study is to investigate the effects of types and amounts of fibers on the compressive strength and tensile behavior high strength fiber-reinforced composites under a static load and impact resistance properties of composites under a high-velocity projectile impact load. Three kinds of mixtures were designed and specimens were manufactured. compressive strength, uniaxial tension, and high velocity projectile impact load tests were performed. Test results showed that the amount of fiber has a greater effect on the tensile strength an d tensile strain capacity than the compressive strength, an d the tensile strain capacity was improved by using hybrid fibers. It was also found that the amount of steel fiber had a great influence on the impact resistance capacity of panels. Although the impact resistance capacity of panels could be improved by using hybrid fibers, the difference of impact resistance capacity between specimens was found to be larger than the case of use of single fiber.

Lipase Treatment of Polyester Fabrics

  • Kim, Hye-Rim;Song, Wha-Soon
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.339-343
    • /
    • 2006
  • The aim of this paper is to improve moisture regain of PET fabrics using a lipase treatment. Effects of nine lipase sources, lipase activator and nonionic surfactant on moisture regain of PET fabrics are examined. Moisture regains of lipase-treated samples improve by two times in average compared with untreated and buffer-treated samples. Alkaline treatment creates larger pitting by more aggressive attack into fiber which is proved by SEM and water contact angle measurement. Moisture regain by alkaline treatment ($0.568%{\pm}0.08$) does not improve. However, lipase-treatment (L2 treatment) improves moisture regain up to 2.4 times ($1.272%{\pm}0.05$). Although lipase treatment is more moderate than alkaline treatment, lipase hydrolysis on PET fabrics improves moisture regain, efficiently. K/S values improved confirm that carboxyl and hydroxyl groups are produced on the surface of PET fabrics by lipase hydrolysis. Moisture regain and dyeability improve by lipase hydrolysis on PET fabrics.

Hydrophilic Modification of Polypropylene Hollow Fiber Membrane by Dip Coating, UV Irradiation and Plasma Treatment

  • Kim Hyun-Il;Kim Jin Ho;Kim Sung Soo
    • Korean Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • PP hollow fiber membrane was hydrophilized by EVOH dip coating followed by low temperature plasma treatment and UV irradiation. EVOH coating attained high water flux without any prewetting but its stability did not guaranteed at high water permeation rate. At high water permeation rate, water flux declined gradually due to swelling and delamination of the EVOH coating layer causing pore blocking effect. However, plasma treatment reduces the swelling, which suppress delamination of the EVOH coating layer from PP support result in relieving the flux decline. Also, UV irradiation helped the crosslinking of the EVOH coating layer to enhance the performance at low water permeation rate. FT-IR and ESCA analyses reveal that EVOH dip coating performed homogeneously through not only membrane surface but also matrix. Thermogram of EVOH film modified plasma treatment and W irradiation show that crosslinking density of EVOH layer increased. Chemical modification by plasma treatment and UV irradiation stabilized the hydrophilic coating layer to increase the critical flux of the submerged membrane.

Calcium Phosphate Cement Reinforced with Chopped High Performance Polyethylene Fiber.

  • Hirayama, S.;Ikemi, T.;Tsujimoto, Y.;Yamazaki, M.;Chow, L.C.;Takagi, S.;Antonucci, J.M.
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.567.1-567
    • /
    • 2001
  • A self-setting calcium phosphate cement (CPC), consisting of tetracalcium phosphate (TTCP) and dicalcium phosphate anhydrous (DCP A), reacts with water and hardens fast (30 min) to form hydroxyapatite (HA) under physiological conditions as the final product. Although this CPC is finding increasing use as a biomaterial, it is presently limited to low stress bearing applications because of its relatively low strength and highly brittle nature. Recently the mechanical properties of CPC reinforced with chopped carbon fiber have been reported.

  • PDF

Implementation of a blood flow simulator and a blood flowmeter probe using self-mixing effect of the laser diode (혈류 시뮬레이터와 LD의 자기혼합효과를 이용한 혈류계 프로브의 구현)

  • Kim, Jong-Weon;Ko, Han-Woo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.76-77
    • /
    • 1998
  • In this paper, the authors have implemented a blood flow simulator and a blood flowmeter probe using self-mixing effect of the laser diode. The purpose of the blood simulator is to simulate microvascular blood flow in tissue. It consists of melinex film (thickness = $125{\mu}m$) which has similar optical characteristics to epidermis and porous polyethylene filter (Vyon, porosity 35%, mean pore size $50{\mu}m$, thickness=1 mm) which has similar optical characteristics to dermis. The blood flowmeter probe consists of laser diode(5 mW, 780 nm wavelength), CD lens(focal lenght 12 mm), current-to-voltage converter, highpass filter, and preamplifier. It doesn't need optical fiber, therefore, implementation of the probe is simpler than conventional probe using optical fiber.

  • PDF

Water Purification Using Hollow Fiber Microfiltration Membrane (막분리(膜分離)를 이용(利用)한 수도원수(水道原水)의 고도처리(高度處理)에 관한 연구(硏究))

  • Cho, Bong Yeon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.7 no.2
    • /
    • pp.1-8
    • /
    • 1993
  • Constant rate permeat experiments using polyethylene hollow fiber membranes were conducted in order to treat dam water for potable purposes. The experiments consisted of two series. One series consisted of six bench scale apparatuses, each having a $0.4m^2$ nominal permeat area, which were applied in determining the optimum operating conditions. The other series was comprised of two pilot scale plant, each having a $40m^2$ nominal permeat area. Both series were operated for six months. Coagulant was not used in any of the experiments. To suppress an increase in differential pressure between the inlet and outlet of the membrane, a hydrophilic membrane was found to be better than a hydrophobic membrane. Also, permeat flux should not be more than 0.03m/h, and air bubbling-washing for 1 minute should be conducted at 180 minutes intervals or less.

  • PDF