• Title/Summary/Keyword: Polyethylene dioxythiophene (PEDOT)

Search Result 5, Processing Time 0.023 seconds

Indium Tin Oxide-Free Large-Area Flexible Organic Light-Emitting Diodes Utilizing Highly Conductive poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) Anode Fabricated by the Knife Coating Method (나이프 코팅 법으로 제작한 ITO-Free 고전도성 PEDOT:PSS 양극 대면적 유연 OLED 소자 제작에 관한 연구)

  • Seok, JaeYoung;Lee, Jaehak;Yang, MinYang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.49-55
    • /
    • 2015
  • This paper reports solution-processed, high-efficiency organic light-emitting diodes (OLEDs) fabricated by a knife coating method under ambient air conditions. In addition, indium tin oxide (ITO), traditionally used as the anode, was substituted by optimizing the conductivity enhancement treatment of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films on a polyethylene terephthalate (PET) substrate. The transmittance and sheet resistance of the optimized PEDOT:PSS anode were 83.4% and $27.8{\Omega}/sq$., respectively. The root mean square surface roughness of the PEDOT:PSS anode, measured by atomic force microscopy, was only 2.95 nm. The optimized OLED device showed a maximum current efficiency and maximum luminous density of 5.44 cd/A and $8,356cd/m^2$, respectively. As a result, the OLEDs created using the PEDOT:PSS anode possessed highly comparable characteristics to those created using ITO anodes.

The Electromagnetic Shielding Effectiveness Using Conducting Polymers (전도성 고분자를 이용한 전자파 차폐효과)

  • 하남규;김종은;서광석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.306-309
    • /
    • 2000
  • The conductive polymers, polyaniline (PANI) emeraldine base and 3, 4-polyethylene dioxythiophene (PEDOT) were synthesized and coated on the PET film primer-dealt with acryl type to find out the electromagnetic shielding effectiveness. When conductive polymer such as PANI and PEDOT is used, if the thickness of coating increases then the electromagnetic shielding effectiveness increases, too, but the visible light transmittance decreases. For PANI, when its conductivity increased, its electromagnetic shielding effectiveness increased, too. For PANI, if the surface resistance is about 140 $\Omega$/$\square$, the shielding effectiveness is about 11 dB in the far field, and about 13 dB in the near field at 1 GHz. For PEDOT, when the surface resistance is about 200 $\Omega$/$\square$, the shielding effectiveness is about 3 dB.

  • PDF

A Study on the Electromagnetic shielding Effectiveness Using Conductive Polymers (전도성 고분자를 이용한 전자파 차폐효과의 연구)

  • 하남규;이보현;김태영;김종은;서광석
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.207-214
    • /
    • 2001
  • The conductive polymers, polyaniline (PANI) emeralidin base and 3,4-polyethylene dioxythiophene(PEDOT) were synthesized and coated on the PET film dealt with acryl type primer to study the electromagnetic shielding effectiveness. When both PANI and PEDOT were coated on the PET film dealt with acryl type priemer, their surface properties such as he adhesive increased. For PANI, when blended with the binder such as PMMA, it adhesive and surface hardness increased, too. The visible light transmittance decreased, while the electromagnetic shielding effectiveness increased, when coated thickness of PANI and PEDOT increased. For PANI, the electromagnetic shielding effectiveness increased as its surface resistance decreased. For PANI, when the surface resistance was 140 Ω/$\square$, the shielding effectiveness was found to be 11 dB in the far field, and 13 dB in the near field at 1 GHz. For PEDOT, when the surface resistance was 200 Ω/$\square$, the shielding effectiveness was found to be 3 dB in the far field, and 7dB in the near field.

  • PDF

Process Optimization for the Industrialization of Transparent Conducting Film (투명 전도막의 산업화를 위한 공정 최적화)

  • Nam, Hyeon-bin;Choi, Yo-seok;Kim, In-su;Kim, Gyung-jun;Park, Seong-su;Lee, Ja Hyun
    • Industry Promotion Research
    • /
    • v.9 no.1
    • /
    • pp.21-29
    • /
    • 2024
  • In the rapidly advancing information society, electronic devices, including smartphones and tablets, are increasingly digitized and equipped with high-performance features such as flexible displays. This study focused on optimizing the manufacturing process for Transparent Conductive Films (TCF) by using the cost-effective conductive polymer PEDOT and transparent substrate PET as alternatives to expensive materials in flexible display technology. The variables considered are production speed (m/min), coating maximum temperature (℃), and PEDOT supply speed (rpm), with surface resistivity (Ω/□) as the response parameter, using Response Surface Methodology (RSM). Optimization results indicate the ideal conditions for production: a speed of 22.16 m/min, coating temperature of 125.28℃, and PEDOT supply at 522.79 rpm. Statistical analysis validates the reliability of the results (F value: 18.37, P-value: < 0.0001, R2: 0.9430). Under optimal conditions, the predicted surface resistivity is 145.75 Ω/□, closely aligned with the experimental value of 142.97 Ω/□. Applying these findings to mass production processes is expected to enhance production yields and decrease defect rates compared to current practices. This research provides valuable insights for the advancement of flexible display manufacturing.

A Solid-Contact Indium(III) Sensor based on a Thiosulfinate Ionophore Derived from Omeprazole

  • Abbas, Mohammad Nooredeen;Amer, Hend Samy
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1153-1159
    • /
    • 2013
  • A novel solid-contact indium(III)-selective sensor based on bis-(1H-benzimidazole-5-methoxy-2-[(4-methoxy-3, 5-dimethyl-1-pyridinyl) 2-methyl]) thiosulfinate, known as an omeprazole dimer (OD) and a neutral ionophore, was constructed, and its performance characteristics were evaluated. The sensor was prepared by applying a membrane cocktail containing the ionophore to a graphite rod pre-coated with polyethylene dioxythiophene (PEDOT) conducting polymer as the ion-to-electron transducer. The membrane contained 3.6% OD, 2.3% oleic acid (OA) and 62% dioctyl phthalate (DOP) as the solvent mediator in PVC and produced a good potentiometric response to indium(III) ions with a Nernstian slope of 19.09 mV/decade. The constructed sensor possessed a linear concentration range from $3{\times}10^{-7}$ to $1{\times}10^{-2}$ M and a lower detection limit (LDL) of $1{\times}10^{-7}$ M indium(III) over a pH range of 4.0-7.0. It also displayed a fast response time and good selectivity for indium(III) over several other ions. The sensor can be used for longer than three months without any considerable divergence in potential. The sensor was utilized for direct and flow injection potentiometric (FIP) determination of indium(III) in alloys. The parameters that control the flow injection method were optimized. Indium(III) was quantitatively recovered, and the results agreed with those obtained using atomic absorption spectrophotometry, as confirmed by the f and t values. The sensor was also utilized as an indicator electrode for the potentiometric titration of fluoride in the presence of chloride, bromide, iodide and thiocyanate ions using indium(III) nitrate as the titrant.