• Title/Summary/Keyword: Polycyclic aromatic hydrocarbons

Search Result 491, Processing Time 0.035 seconds

Genetic Effects on Exposure to Polycyclic Aromatic Hydrocarbons in a Korean Population

  • Yang, Mi-Hi
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.209-211
    • /
    • 2002
  • A number of polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene, are carcinogenic and thought to contribute to the overall burden of human cancer (1). PAHs are ubiquitous in the environment and humans are exposed to them via multi-pathways, e.g. air or soil of urban areas, exposure to direct or indirect tobacco smoke, and ingestion of food or water polluted by combustion effluents (2-3). (omitted)

  • PDF

A Kinetic Study of the Chemiluminescent Reactions of Bis(2,4-dinitrophenyl)Oxalate, Hydrogen Peroxide, and Fluorescent Polycyclic Aromatic Hydrocarbons

  • Shin, Hyung-Seon;Kang, Sung-Chul;Kim, Kang-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.3
    • /
    • pp.251-254
    • /
    • 1989
  • A kinetic study on the chemiluminescence resulting from the reaction between bis(2,4-dinitrophenyl) oxalate(DNPO) and hydrogen peroxide in the presence of fluorescent polycyclic aromatic hydrocarbons in a viscous phthalate medium has been conducted. The resultant data confirm that the reaction between DNPO and $H_2O_2$ is the rate determining step. Higher rate constants are obtained with DNPO than those with bis(2,4,6-trichlorophenyl) oxalate (TCPO).

Toxicological Effects of Polycyclic Aromatic Hydrocarbon Quinones Contaminated in Diesel Exhaust Particles

  • Kumagai, Yoshito;Taguchi, Keiko
    • Asian Journal of Atmospheric Environment
    • /
    • v.1 no.1
    • /
    • pp.28-35
    • /
    • 2007
  • Accumulated epidemiological and animal studies have suggested that prolonged exposure to ambient particulate matter (PM) is associated with an increased risk of cardiovascular disease and pulmonary dysfunction. While diesel exhaust particles (DEP) contain large variety of compounds, polycyclic aromatic hydrocarbons (PAHs) are a dominant component contaminated in DEP. This article reviews effects of two PAH quinones, 9,10-phenanthraquinone (9,10-PQ) and l,2-naphthoquinone (l,2-NQ), on vascular and respiratory systems.

Complexation of Co-contaminant Mixtures between Silver(I) and Polycyclic Aromatic Hydrocarbons

  • Yim, Soo-Bin
    • Journal of Environmental Science International
    • /
    • v.12 no.8
    • /
    • pp.871-879
    • /
    • 2003
  • The complexation of co-contaminant mixtures between Ag(I) and polycyclic aromatic hydrocarbon (PAH) molecules (naphthalene, pyrene, and perylene) were investigated to quantify the equilibrium constants of their complexes and elucidate the interactions between Ag(I) and PAH molecules. The apparent solubilities of PAHs in aqueous solutions increased with increasing Ag(I) ion concentration. The values, K$_1$ and K$_2$ of equilibrium constants of complexes of Ag(I)-PAHs, were 2.990 and 0.378, 3.615 and 1.261, and 4.034 and 1.255, for naphthalene, pyrene, and perylene, respectively, The K$_1$and K$_2$ values of PAHs for Ag(I) increased in the order of naphthalene < pyrene < perylene and naphthalene < pyrene ≒ perylene, respectively, indicating that a larger size of PAH molecule is likely to have more a richer concentration of electrons on the plane surfaces which can lead to stronger complexes with the Ag(I) ion. For the species of Ag(I)-PAH complexes, a 1:1 Ag(I) : the aromatic complex, AgAr$\^$+/, was found to be a predominant species over a 2:1 Ag(I) : aromatic complex, Ag$_2$Ar$\^$++/. The PAH molecules with four or more aromatic rings and/or bay regions were observed to have slightly less affinity with the Ag(I) ion than expected, which might result from inhibiting forces such as the spread of aromatic $\pi$ electrons over o wide molecular surface area and the intermolecular electronic repulsion in bay regions.

Toxicity Estimation of Nonionic Surfactants and Their Effect on the Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) (비이온계 계면활성제의 독성 평가 및 Polycyclic Aromatic Hydrocarbons(PAHs) 생분해에 미치는 영향)

  • Park, Jong-Sup;Kim, In S.;Choi, Heechul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2107-2113
    • /
    • 2000
  • Toxicity estimation of three nonionic surfactants (Brij 30, Tween 80, Triton X-lOO) and their effect on the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in the aqueous phase and soil slurry phase were investigated. Brij 30 was found to be the most biodegradable among the surfactants tested, and showed no substrate inhibition up to a concentration of 1.5 g/L. It was definitely utilized as a carbon source by the microorganisms. Naphthalene and phenanthrene in the aqueous phase were completely degraded by phenanthrene-acclimated cultures within 60 hours, but a substantial amount of naphthalene was lost due to the volatilization. The limiting step in the soil slurry bioremediation was bioavailablity by the microorganisms in the sand slurry and mass transfer from a solid to aqueous phase in the clay slurry. TOC analysis revealed that most of substrates including surfactant in the reactor were degraded. pH transition indicated that phenanthrene was metabolized into intermediates containing acid function.

  • PDF

Assessment of Peroxy-acid Oxidation for Reduction of Polycyclic Aromatic Hydrocarbons(PAHs) in Field Soil (현장토양내 다환방향족탄화수소 저감을 위한 과산소산 산화효율 평가)

  • Jung, Sang-Rak;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.2
    • /
    • pp.132-139
    • /
    • 2021
  • Laboratory-scale experiments were conducted to assess the effect of oxidative decomposition of polycyclic aromatic hydrocarbons (PAHs) in field soil using peroxy-acid. The study soil texture is sandy soil containing 19.2 % of organic matter at pH 6.8. Among polycyclic aromatic hydrocarbons (PAHs) in the study soil, the concentration of benzo(a)pyrene is 2.23 mg/kg which is three times higherthan the Korea standard level. Therefore benzo(a)pyrene was selected as the target study PAH for the treatment by peroxy-acid oxidation using peroxy-acid coupled with hydrogen peroxide, and the efficiency of the oxidative decomposition of benzo(a)pyrene was assessed for the different organic acids and dosages of an organic acid and hydrogen peroxide. Propionic acid among the tested organic acids showed the highest efficiency of benzo(a)pyrene reduction in the peroxyacid oxidation treatment and finally satisfied the Korea standard level.

Chemopreventive Effects of Korean Red Ginseng (Panax ginseng Meyer) on Exposure to Polycyclic Aromatic Hydrocarbons

  • Lee, Ho-Sun;Park, Jong-Yun;Yang, Mi-Hi
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.339-343
    • /
    • 2011
  • Polycyclic aromatic hydrocarbons (PAHs) are well known environmental carcinogens. PAH metabolites, especially BaP-7,8- dihydrodiol, 9,10 epoxide, initiate carcinogenesis via high specificity binding to DNA to form DNA adducts. The Korean red ginseng (KRG) from Panax ginseng has been suggested to protect against damages due to PAH exposure but the mechanism is unknown. Therefore, we investigated effects of KRG on PAH exposure using toxicokinetic methods and changes of PAH-induced oxidative damage during a 2 week-clinical trial (n=21 healthy young female, $23.71{\pm}2.43$ years). To analyze antioxidative effects of KRG, we measured changes in the levels of urinary malondialdehyde (MDA) before and after KRG treatment. We observed a significant positive association between levels of urinary MDA and 1-hydroxypyrene, a biomarker of PAH exposures (slope=1.47, p=0.03) and confirmed oxidative stress induced by PAH exposures. A reverse significant correlation between KRG treatment and level of urinary MDA was observed (p=0.03). In summary, results of our clinical trial study suggest that KRG plays a significant role in antioxidative as well as toxicokinetic pathways against PAHs exposure.

A Rapid Method for Analysing Polycyclic Aromatic Hydrocarbons (PAH's) in Urban Dust Using Supercritical Fluid Extraction (SFE) and Gas Chromatography/Mass Spectrometry (GC/MS)허귀석, 김달호 (초임계유체추출과 GC/MS를 이용한 도심 대기분진 중 PAH들의 신속한 분석법에 관한 연구)

  • Heo, Gwi Seok;Kim, Dal Ho
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.10
    • /
    • pp.726-733
    • /
    • 1994
  • Supercritical fluid extraction (SFE) followed by gas chromatographic separation and mass spectrometric (MS) detection were used in rapid analysis of polycyclic aromatic hydrocarbons (PAH's) in air particulate material extracted for 30 min with 10 ml of supercritical $N_2O$ without another sample preparation step. Two samples, urban dust in Seoul area and a certified air particulate reference material 1649 supplied by the NBS (National Bureau of Standards), were processed for the purpose of evaluating extraction and analysis methods. As a result, the quantitative recovery of PAH's in the SFE method was relatively lower than conventional organic solvent extraction methods, but reproducibility was resonable, and analysis time was reduced remarkably. The method has proved to be suitable for monitoring of PAH's in air particulate material.

  • PDF