• Title/Summary/Keyword: Polyaniline derivatives

Search Result 5, Processing Time 0.02 seconds

Electrorheological Characteristics of Suspensions composed of Polyaniline Derivatives with Ionic or Nonionic Side Groups (Ionic 또는 Nonionic Side Group을 갖는 Polyaniline Suspension의 전기유변특성)

  • 조민성;김지우;장원휴;서문석;신민재;최형진
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.91-96
    • /
    • 1999
  • Semiconductive polyaniline and its derivatives such as poly(aniline-co-sodium diphenylamine sulfonate), poly (aniline-co-o-ethoxyaniline), poly (o-methylaniline), and poly (o-methoxyaniline) were synthesized, and then adopted as suspending particles of the electrorheological (ER) fluids. All suspensions of these polyaniline derivatives showed typical ER properties under high applied electric fields. However, flow behaviors are observed to be quite different depending on the polyaniline derivatives, especially in the stress plateau regions obtained at low shear rates. Using a scaling law, we also obtained universal cures of ER fluids from the flow curves at each applied electric field based on the relationship between the dynamic yield stress with the applied electric field and flow curve changes according to the electric fields.

  • PDF

Substituent Effects on Conformational Changes in (+)-CSA Doped Polyaniline Derivatives

  • Lee, Eung;Kim, Eunok
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2111-2116
    • /
    • 2013
  • This paper reports substituent effects on the conformational changes in polyaniline (PAni) derivatives. PAni, poly-o-toluidine (POT), and poly-o-anisidine (POA) were formed by potentiodynamic electropolymerization in aqueous solution containing (+)-camphorsulfonic acid (CSA) as a dopant. UV-Vis spectroscopy and cyclic voltammetry measurements revealed that the methyl group showed a greater steric hindrance than the methoxy group. Further, the doping level decreased with increasing steric hindrance. The sign pattern of the circular dichroism (CD) bands for POA was opposite to that for PAni. However, no CD bands were observed in POT. The steric hindrance caused helical inversion, but at a high level of steric hindrance, the helical conformation could not be adopted, because of the reduced doping level. The reduced crystallinity was greatly affected by the decreased doping level. The steric effect influenced the polymer conformation and the doping level, thus determining the optical activity, morphology, and crystallinity of the PAni derivatives.

Synthesis and Electrorheological Effect of the Suspensions Composed of Nano Sized Hollow Polyaniline Derivatives

  • Choi Ung-Su
    • KSTLE International Journal
    • /
    • v.7 no.1
    • /
    • pp.18-21
    • /
    • 2006
  • The electrorheology of hollow PANI derivative suspensions in silicone oil was investigated by varying the electric fields and shear rates, respectively. The hollow PANI derivative susepnsions showed a typical electrorheological (ER) response caused by the polarizability of an amide polar group and shear yield stress due to the formation of chains upon application of an electric field. The shear stress for the hollow PANI succinate suspension exhibited an electric field power of 0.67. On the basis of the experimental results, the newly synthesized hollow PANI derivative suspensions were found to be an anhydrous ER fluid.

Applications of Conductive Polymers to Electrochemical Sensors and Energy Conversion Electrodes

  • Kim, Dong-Min;Noh, Hui-Bog;Shim, Yoon-Bo
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.125-139
    • /
    • 2013
  • The electrical conductive polymers (ECPs) reported at my research group are introduced in this review, which works are started from the late Professor Su-Moon Park's pioneering research for polyaniline at the University of New Mexico. The electrochemical and spectroelectrochemical properties and their applications to sensor and energy conversion systems are briefly described. At first, the growth and degradation mechanism of polyaniline describes and we extend to polypyrrole, polyazulene, polydiaminonaphthalenes, and polyterthiophene derivatives. In addition, the preparation of monomer precursors having functional groups is briefly described that can give us many exceptional applications for several chemical reactions. We describe the application of these ECPs for the fabrication of chemical sensors, biosensors, biofuel cells, and solar cells.

Electroluminescent Properties of White Light-Emitting Device Using Photoconductive Polymer and Anthracene Derivatives (광전도성 고분자와 안트라센 유도체를 이용한 백색 전계발광소자의 발광 특성)

  • Lee Jeong-Hwan;Choi Hee-Lack;Lee Bong
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.543-547
    • /
    • 2005
  • Organic electroluminescence devices were made from 1,4-bis-(9-anthrylvinyl)benzene (AVB) and 1,4-bis-(9-aminoanthryl)benzene (AAB) anthracene derivatives. Device structure was ITO/AVB/PANI(EB)/Al (multi-layer device) and ITO/AAB:DCM/Al(single-layer device). In these devices, AVB, polyaniline(emeraldine base) (PANI(EB)) and AAB were used as the emitting material. 4-(dicyanomethylene)-2-methyl-6-p-(dimethylamino)styryl-4H -pyran(DCM) was used as red fluorescent dopant. We studied change of fluorescence wavelength with concentration of DCM doped in AAB. The ionization potential (IP) and optical band gap (Eg) were measured by cyclic voltammetry and UV-visible spectrum. We compared with difference of emitting wavelength between photoluminescence and electroluminescence spectrum. In case of the multi-layer device, PANI and AVB EL spectra have similar wave pattern to each PL spectrum and when PAM and AVB were used at the same time, and multi-layer device showed that a balanced recombination and radiation kom PANI and AVB. In case of the single-layer device, with the increase of DCM concentration, the blue emission decreases and red emission increases. This indicates that DCM was excited by the energy transfer from AAB to DCM or the direct recombination at the dopant sites due to carrier trapping, or both. The device with $1.0wt\%$ DCM concentration gave white light.