• Title/Summary/Keyword: Polyaniline composites

Search Result 33, Processing Time 0.018 seconds

Fabrication and Electromechanical Behaviors of a SWNT/PANi Composite Film Actuator (탄소나노튜브/도전성폴리머 복합재 엑츄에이터의 제조 및 특성실험)

  • Zhang, Shuai;Kim, Cheol
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.7-11
    • /
    • 2006
  • The improved SWNTs/PANi composite actuator films applicable to an artificial muscle were fabricated successfully using a new process of manufacture that consists of 90% pure single-walled carbon nanotubes (SWNT) and chemical polymerization. PANi is electrically conducting polyaniline polymer. The conductivities of the composite SWNTs/PANi film-type actuators and the pure PANi films fabricated were measured as 56.15 S/cm and 17.38 S/cm, respectively, by the 4-prove method. The conductivity of the composite actuator is 3.2 times higher than the pure PANi film. The fabricated composite actuator showed higher conductivity than any other similar ones. The quality of samples was investigated by an electron scanning microscope (SEM). To measure the actuating strains, a specially designed beam balance apparatus was developed and strains of the composite actuators was measured by a laser displacement sensor subjected to electric currents. During the operation, the sample was soaked in the $NaNO_3$ solution and the sine-wave voltage in the range of $+1V{\sim}-1V$ was applied. The length of the composite actuator changed from $l_0=12.690$ mm to $l_1=12.733$ so that the change of length was l=0.043 mm and the strain was 0.34 %. This is a very high strain for this kind of a composite actuator. Other result reported by Tahhan showed 0.23 % strain, so that the present result is improved by 48%.

Control of Chlorinated Volatile Pollutants at Indoor Air Levels Using Polymer-based Photocatalyst, Composite

  • Kim, Byeong-Chan;Kim, Hye-Jin;Kim, Ji-Eun;Park, Eun-Ju;Noh, Ji-Sun;Kang, Hyun-Jung;Shin, Seung-Ho;Jo, Wan-Kuen
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.105-112
    • /
    • 2013
  • In this study, polyaniline (PANI)-based $TiO_2$ (PANI-$TiO_2$) composites calcined at different temperatures were prepared and their applications for control of trichloroethylene (TCE) and tetrachloroethylene (TTCE) at indoor air levels were investigated. For these target compounds, the photocatalytic control efficiencies of PANI-$TiO_2$ composites did not exhibit any trend with varying calcination temperatures (CTs). Rather, the average control efficiencies of PANI-$TiO_2$ composites over 3-h photocatalytic process increased from 61 to 72% and from 21 to 39% for TCE and TTCE, respectively, as the CT increased from 350 to $450^{\circ}C$. However, for both the target compounds, the average control efficiencies of PANI-$TiO_2$ composites decreased gradually as the CT increased further to 550 and $650^{\circ}C$. These results were ascribed to contents of anatase crystal phase and specific surface area of different particle sizes in the PANI-$TiO_2$ composites, which were demonstrated by the X-ray diffraction and scanning electron microscopy images, respectively. At the lowest input concentration (IC, 0.1 ppm), average control efficiencies of TCE and TTCE were 72 and 39%, respectively, whereas at the highest IC (1.0 ppm) they were 52 and 18%, respectively. As stream flow rate increased from 0.1 to 1.0 L $min^{-1}$, the average control efficiencies of TCE and TTCE decreased from ca. 100 to 47% and ca. 100 to 18%, respectively. In addition, the average control efficiencies of TCE and TTCE decreased from ca. 100 to 23% and ca. 100 to 8%, respectively as the relative humidity increased from 20 to 95%. Overall, these findings indicated that as-prepared PANI-$TiO_2$ composites could be used efficiently for control of chlorinated compounds at indoor air levels;if operational conditions were optimized.

Electrochemical Properties of LiMnO2-organic Composite Cathodes with High Capacity for Lithium Ion Polymer Battery (리튬 이온 폴리머 전지용 고용량 LiMnO2-organic Composite 정극의 전기화학적 특성)

  • 김종욱;조영재;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.2
    • /
    • pp.162-168
    • /
    • 2002
  • The purpose of this study is to research and develop LiMnO$_2$-organic and Li$_{0.3}$MnO$_{2}$-organic composite with high energy density for Lithium ion polymer battery. This paper describes cyclic voltammetry, impedance sepctroscopy, electrochemical properties of LiMnO$_2$-organic and Li$_{0.3}$MnO$_{2}$-organic composite with polymer electrolyte as a function of a mixed ratio. The first discharge capacity of LiMnO$_2$-PAn with 3 wt.% PAn was 83mHA/g, while that of Li$_{0.3}$MnO$_{2}$-PPy composite was 136 mAh/g. The Ah efficiency was above 98% after the 2nd cycle. The LiMnO$_2$-PAn with DMcT 2 wt.% and Li$_{0.3}$MnO$_{2}$-PPy composites cathode with 5wt. PPy in PVDF-PC-EC-LiClO$_4$ electrolyte showed good capaity with cycling. The discharge capacity of LiMnO$_2$-PAn with wt.% DMcT was 80 and 130 mAh/g at 1st and 12th cycle, respectively. The capacity of LiMnO$_2$-PAn composite with 2 wt.% DMcT was higher than that of LiMnO$_2$-PAn composite.mposite.