• Title/Summary/Keyword: Polyamide Fibers

Search Result 53, Processing Time 0.028 seconds

Effect of Pull-out Property by Shape and Mechanical Property of Reinforcing Fiber on the Flexural Behavior of Concrete (보강섬유의 형상과 물성에 따른 인발특성이 콘크리트의 휨거동에 미치는 영향)

  • Kim, Hong-Seop;Nam, Jeong-Soo;Kim, Jung-Hyun;Han, Sang-Hyu;Kim, Gyu-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.41-50
    • /
    • 2014
  • This study evaluated the bonding property of fiber and flexural behavior of fiber reinforced concrete. Amorphous steel fiber, hooked steel fiber and polyamide fiber was used for evaluation of bonding property and flexural behavior. As a result, the hooked steel fiber was pulled out from matrix when peak stress. However amorphous steel fiber occurred shear failure because bonding strength between fiber and matrix was higher than tensile strength of fiber. Polyamide fibers occurred significantly displacement to peak stress because of elongation of fiber. After that peak stress, fiber was cut off. Amorphous steel fiber reinforced concrete had a greater maximum flexural load compared with hooked steel fiber reinforced concrete because bonding performance between fiber and matrix was high and mixed population of fiber was many. However flexural stress was rapidly reduced in load-deflection curve because of shear failure of fiber. Flexural stress of hooked steel fiber reinforced concrete was slowly reduced because fiber was pulled out from the matrix. In the case of polyamide fiber reinforced concrete, flexural stress was rapidly lowered because of elongation of fiber. However flexural stress was increased again because of bonding property between polyamide fiber and matrix. The pull-out properties of the fiber and matrix has effect on the deformation capacity and flexural strength of fiber reinforced concrete.

Evaluation on Rear Fracture Reduction and Crack Properties of Cement Composites with High-Velocity Projectile Impact by Fiber Types (섬유 종류에 따른 시멘트복합체의 고속 비상체 충격에 대한 배면파괴저감 및 균열특성 평가)

  • Han, Sang-Hyu;Kim, Gyu-Yong;Kim, Hong-Seop;Kim, Jung-Hyun;Nam, Jeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.157-167
    • /
    • 2015
  • Cement composites subjected to high-velocity projectile shows local failure and it can be suppressed by improvement of flexural toughness with reinforcement of fiber. Therefore, researches on impact resistance performance of cement composites are in progress and a number of types of fiber reinforcement are being developed. Since bonding properties of fiber with matrix, specific surface area and numbers of fiber are different by fiber reinforcement type, mechanical properties of fiber reinforced cement composites and improvement of impact resistance performance need to be considered. In this study, improvement of flexural toughness and failure reduction effect by impact of high-velocity projectile have been evaluated according to fiber type by mixing steel fiber, polyamide, nylon and polyethylene which are have different shape and mechanical properties. As results, flexural toughness was improved by redistribution of stress and crack prevention with bridge effect of reinforced fibers, and scabbing by high-velocity impact was suppressed. Since it is possible to decrease scabbing limit thickness from impact energy, thickness can be thinner when it is applied to protection. Scabbing of steel fiber reinforced cement composites was occurred and it was observed that desquamation of partial fragment was suppressed by adhesion between fiber and matrix. Scabbing by high-velocity impact of synthetic fiber reinforced cement composites was decreased by microcrack, impact wave neutralization and energy dispersion with a large number of fibers.

Characteristics and Dyeing Properties of Green Tea Colorants(Part I) -Components and characteristics of Green Tea Colorants- (녹차색소의 특성과 염색성 (제1보) -녹차색소의 성분과 특성-)

  • Shin, Youn-sook;Choi, Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.1
    • /
    • pp.140-146
    • /
    • 1999
  • Colorants in green tea were extracted freeze-dried and analyzed to investigate the possibility of using as a natural dye. Fractionation of the colorants was carried out by column chromatograpy. Colorants in green tea were eluted into five fractions. All the fractions except fraction F2 showed absorption peakat 280nm. Fraction f2 showed absorption peak at 270nm and broad peak at 350nm, From the IR analysis it is speculated that fractions F2-F5 having similar stucture but different molecular weight are catechis. Silk fabrics dyes with fractions F1-F4 showed yellowish red color while sample dyed with fraction F5 showed red color. The colorants from green tea infusion was applied to silk wool nylon cotton and rayon fabrices. It showed relatively good affinity to protein and polyamide fibers bur low affinity to cellulose and regenerated cellulose fibers.

  • PDF

Manufacture of Water-Resistant Corrugated Board Boxes for Agricultural Products in the Cold Chain System(I) - Effects of Fiber Types, Wet Strength Agents and a Moisture-Proof Chemical on the Physical Properties of Base Papers for Corrugated Board Boxes - (농산물 저온유통용 내수 골판지 상자의 제조 (제1보) -섬유의 종류, 습윤지력증강제 및 방습제 첨가에 따른 골판지 원지의 물리적 특성 -)

  • 조중연;민춘기;신준섭
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.2
    • /
    • pp.26-32
    • /
    • 2003
  • For the purpose of manufacturing water-resistant corrugated board boxes for agricultural products in the cold chain system, the effects of fiber types, wet strength agents and a moisture-proof chemical on the properties of the base papers were investigated first. PAE(polyamide amine epichlorohydrin) showed better performance than MF(melamine formalde-hyde) over broad stock pH ranges, which was prefered as wet strength agent for the paper grade. When short fibers(AOCC, KOCC) were mixed with long fiber(UKP) in certain ratios, some physical properties of the paper made with mixed fibers were similar to those of the paper made with UKP only. Paper containing AOCC showed the biggest increase in water resistance when PAE was added to the stock. Synergistic effects in moisture-proof and some mechanical properties of paper were appeared when PAR was added internally, together with the coating of a moisture proof chemical on the sheets.

Preparation and Properties of Poly(ethylene terephthalate)(PET)/Polyamide-6(PA6) Alloy Fibers using Epoxy as a Reactive Compatibilizer: I. Effect of Epoxy on the Phase Separation of PET/PA6 Alloys (에폭시를 반응성 상용화제로 사용하여 제조한 폴리에틸렌테레프탈레이트와 폴리아미드-6 알로이 섬유의 구조와 성질: 1. 알로이의 상분리에 미치는 에폭시의 효과)

  • Zhou, Jing;Min, Byung-Gil;Lim, Mok-Keun;Lee, Kwang-Sang;Yu, Yeong-Chool;Han, Jae-Sung
    • Textile Coloration and Finishing
    • /
    • v.24 no.2
    • /
    • pp.145-151
    • /
    • 2012
  • Polymer alloys of poly(ethylene terephthalate)(PET) and nylon6(PA6) which were not miscible each other by themselves were successfully prepared through melt compounding using a twin-screw extruder by utilizing epoxy as reactive compatibilizer. At the epoxy(DGEBA) amount of 0.5~2wt%, the domain size(average diameter) of the discontinuous phase could be reduced up to 0.2${\mu}m$ from 1-5${\mu}m$ that of the simple blend without epoxy. The reaction was presumed to happen mostly at interphase from the result of maximum increase of melt viscosity at the middle range of PET/PA6 blend ratio. It is expected that alloy fibers of PET/epoxy/PA6 with enough mechanical strength for use can be prepared.

Influence of Stacking Sequence on Carbon Fiber/Aramid Fiber Hybrid Composite (탄소섬유/아라미드섬유 하이브리드 복합재료의 적층 순서의 영향 평가)

  • Hyeonho Lee;Seoyeon Bae;Sungbi Lee;Myoung-Gyu Lee;Wonjin Na
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.383-387
    • /
    • 2023
  • Carbon fiber-reinforced composites have excellent mechanical properties. However, the fracture toughness is a disadvantage due to brittle failure mode. The fracture toughness can be enhanced using hybridization with large-elongation fibers. In this study, polyamide (aramid) fibers are hybridized with carbon fiber with various stacking sequences. As a result, the Izod impact strength was enhanced by 63% with 25% aramid fiber hybridization. It is also shown that there is an optimal point in laminated composite hybridization, [CF/CAF2/CF]s stacking sequence.

The Application of Non-ionic Vat dye to Polyester Fiber : Practical Aspects and Preliminary Studies (비이온성 배트염료의 폴리에스터 섬유에의 응용)

  • 손영아;김태경
    • Textile Coloration and Finishing
    • /
    • v.15 no.1
    • /
    • pp.23-29
    • /
    • 2003
  • Dyeings of the most widely used to the synthetic fibers, namely polyamide and polyester, have been carried out using acid dyes and disperse dyes. The above mentioned dye types, and indeed all dyes onto substrates, rely on the reaction properties between the substrates and dye molecules. In terms of fastness properties, however, especially to washings, the satisfactory levels are not present in the results from acid and disperse dyeings. Thus, vat dyeings leaves a feasibility and are an alternative way to overcome the problem. Although attempts and works have been reported in early years, with little if any commercial achievement and success. In this context, to meet increased demands towards a high level of wash fastness from consumers and retailers, an attempt using vat dyes has been carried out in this work.

Fire Resistance of Reinforced Polyamide Fiber Ultra High Strength(160MPa) Concrete (폴리아미드 섬유보강 초고강도(160MPa) 콘크리트의 내화성능)

  • Jeon, Joong-Kyu;Chan, Chan-Ki;Kim, Soo-Young;Kim, Bok-Kyu;Kim, Pil-Sung;Yun, Kyung-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.547-548
    • /
    • 2009
  • Fiber reinforcement has been being widely used in concrete to enhance the mechanical properties and to reduce the micro-cracking caused by plastic and drying shrinkage. While researches has been focused on the benefits of fiber reinforcement, the properties of fiber reinforced concrete are strongly dependent on the type, shape and the amount of fibers in concrete.

  • PDF

pH Control for Dyebath Reuse in Dyeing of Polyamide with Binary Mixtures of Acid Dyes

  • Koh, Joonseok;Park, Sang Hyuck;Shim, Goo Hwan;Cho, Dae Hwan;Kim, Jae Pil
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.110-116
    • /
    • 2004
  • Hydrolyzable organic esters were compared with ammonium sulphate as an acid donor for the pH control in dye-bath-reuse system of acid dyes mixtures. The ability of pH control, levelness, dyeing properties and reproducibility in dye-bath-reuse system were investigated comparatively. Hydrolyzable organic esters showed higher exhaustion and color yield than ammonium sulphate. In addition, hydrolyzable organic ester exhibited very low conductivity less than 0.5 mS, while ammonium sulphate give high conductivity. However, we could not observe any difference in levelness of dyed samples between two kinds of acid donors in laboratory scale dyeing. Over 10 cycles of reuse, hydrolyzable organic esters showed higher reproducibility than ammonium sulphate. No deterioration of the color fastness and levelness occurs over 10 cycles of reuse.

Mechanical and thermal properties of polyamide versus reinforced PMMA denture base materials

  • Soygun, Koray;Bolayir, Giray;Boztug, Ali
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.153-160
    • /
    • 2013
  • PURPOSE. This in vitro study intended to investigate the mechanical and thermal characteristics of Valplast, and of polymethyl methacrylate denture base resin in which different esthetic fibers (E-glass, nylon 6 or nylon 6.6) were added. MATERIALS AND METHODS. Five groups were formed: control (PMMA), PMMA-E glass, PMMA-nylon 6, PMMA-nylon 6.6 and Valplast resin. For the transverse strength test the specimens were prepared in accordance with ANSI/ADA specification No.12, and for the impact test ASTM D-256 standard were used. With the intent to evaluate the properties of transverse strength, the three-point bending (n=7) test instrument (Lloyd NK5, Lloyd Instruments Ltd, Fareham Hampshire, UK) was used at 5 mm/min. A Dynatup 9250 HV (Instron, UK) device was employed for the impact strength (n=7). All of the resin samples were tested by using thermo-mechanical analysis (Shimadzu TMA 50, Shimadzu, Japan). The data were analyzed by Kruskal-Wallis and Tukey tests for pairwise comparisons of the groups at the 0.05 level of significance. RESULTS. In all mechanical tests, the highest values were observed in Valplast group (transverse strength: $117.22{\pm}37.80$ MPa, maximum deflection: $27.55{\pm}1.48$ mm, impact strength: $0.76{\pm}0.03$ kN). Upon examining the thermo-mechanical analysis data, it was seen that the E value of the control sample was 8.08 MPa, higher than that of the all other samples. CONCLUSION. Although Valplast denture material has good mechanical strength, its elastic modulus is not high enough to meet the standard of PMMA materials.