• Title/Summary/Keyword: Polyacrylonitrile (PAN)

Search Result 172, Processing Time 0.027 seconds

Gas sensing properties of polyacrylonitrile/metal oxide nanofibrous mat prepared by electrospinning

  • Lee, Deuk-Yong;Cho, Jung-Eun;Kim, Ye-Na;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.281-288
    • /
    • 2008
  • Polyacrylonitrile(PAN)/metal oxide(MO) nanocomposite mats with a thickness of 0.12 mm were electrospun by adding 0 to 10 wt% of MO nanoparticles ($Fe_2O_3$, ZnO, $SnO_2$, $Sb_2O_3-SnO_2$) into PAN. Pt electrode was patterned on $Al_2O_3$ substrate by DC sputtering and then the PAN(/MO) mats on the Pt patterned $Al_2O_3$ were electrically wired to investigate the $CO_2$ gas sensing properties. As the MO content rose, the fiber diameter decreased due to the presence of lumps caused by the presence of MOs in the fiber. The PAN/2% ZnO mat revealed a faster response time of 93 s and a relatively short recovery of 54 s with a ${\Delta}R$ of 0.031 M${\Omega}$ at a $CO_2$ concentration of 200 ppm. The difference in sensitivity was not observed significantly for the PAN/MO fiber mats in the $CO_2$ concentration range of 100 to 500 ppm. It can be concluded that an appropriate amount of MO nanoparticles in the PAN backbone leads to improvement of the $CO_2$ gas sensing properties.

Aqueous Boron Adsorption on Carbonized Nanofibers Prepared from Electrospun Polyacrylonitrile(PAN) Mats (전기방사 후 탄소화된 폴리아크릴로니트릴(PAN) 나노섬유의 수용액 중 붕소 흡착)

  • Hong, So Hee;Han, Sun-Gie;Kim, Su Young;Won, Yong Sun
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.210-217
    • /
    • 2022
  • Boron(B) is a rare resource used for various purposes such as glass, semiconductor materials, gunpowder, rocket fuel, etc. However, Korea depends entirely on imports for boron. Considering the global boron reserves and its current production rate, boron will be depleted on earth in 50 years. Thus, a process including proper adsorbent materials recovering boron from seawater is demanded. This research proposed carbonized nanofibers prepared from electrospun PAN(polyacrylonitrile) mats as promising materials to adsorb boron in aqueous solution. First, the mechanism of boron adsorption on carbonized nanofibers was investigated by DFT(density functional method)-based molecular modeling and the calculated energetics demonstrated that the boron chemisorption on the nitrogen-doped graphene surface by a two-step dehydration is possible with viable activation energies. Then, the electrospun PAN mats were stabilized in air and then carbonized in an argon atmosphere before being immersed in the boric acid aqueous solution. Analytically, SEM(scanning electron microscopy) and Raman measurements were employed to confirm whether the electrospinning and carbonization of PAN mats proceeded successfully. Then, XPS(X-ray photoelectron spectroscopy) peak analysis showed whether the intended nitrogen-doped carbon nanofiber surface was formed and boron was properly adsorbed on nanofibers. Those results demonstrated that the carbonized nanofibers prepared from electrospun PAN mats could be feasible adsorbents for boron recovery in seawater.

Thermal Stabilization Effect of PAN Nanofibers Irradiated by Electron Beam Irradiation (전자선 처리된 PAN 나노섬유의 열안정화 효과)

  • Kim, Du Yeong;Jeun, Joon Pyo;Shin, Hye Kyoung;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.6 no.1
    • /
    • pp.61-65
    • /
    • 2012
  • Polyacrylonitrile (PAN) is one of the most widely used precursor polymers for making high performance carbon fibers. Conversion of PAN fibers to good quality carbon fibers requires an essential stabilization step prior to carbonization. Electron beam irradiation is an excellent technique for modifying the physical properties of materials. This study aimed to elucidate the effects of electron beam irradiation on the stabilization reactions of PAN nanofibers. FT-IR analysis indicated that the stabilization of irradiated PAN nanofibers was initiated at a lower temperature. The TG curve of PAN nanofibers showed a significant decrease of weight loss step between 280 and $320^{\circ}C$. In the case of irradiated PAN nanofibers, weight loss sudden weight did not loss occurs.

Application of Suspension-Polymerized Spherical PAN beads as a Precursor of Spherical Activated Carbon (현탁중합으로 합성된 구형 PAN 수지의 구형 활성탄의 전구체로서의 활용)

  • Hyewon, Yeom;Hongkyeong, Kim
    • Journal of Institute of Convergence Technology
    • /
    • v.12 no.1
    • /
    • pp.13-18
    • /
    • 2022
  • Polyacrylonitrile was synthesized through suspension polymerization and then sieved to obtain spherical beads with a size of 200~510 ㎛. PAN was copolymerized with 2 mol% MMA monomer which is known to promote cyclization and crosslinking of nitrile group. The resonance cyclization reaction of the nitrile group in the synthesized PAN beads was observed near 170℃ with thermal analysis and FT-IR. The reaction conversion of the nitrile group in spherical beads was 23% during heat treatment, which was lower than that of the well-oriented PAN fiber used as a precursor of carbon fiber. This is because the stereo-regularity of molecular chains in the form of a random coil (spherical bead) is much lower than that of PAN fiber. It was confirmed that the compressive strength of the spherical PAN bead was greatly improved through the resonance cyclization and shrinkage according to the heat treatment, and it was also observed that the pores in PAN beads were formed after the heat treatment.

Surface Modification of Polyacrylonitrile by Low-temperature Plasma (저온플라즈마처리에 의한 폴리아크릴로니트릴의 표면개질)

  • Seo, Eun-Deock
    • Textile Coloration and Finishing
    • /
    • v.19 no.1 s.92
    • /
    • pp.45-52
    • /
    • 2007
  • Polyacrylonitrile(PAN) fiber was treated with low-temperature plasmas of argon and oxygen for surface modification, and its surface chemical structure and morphology were examined by a field emission scanning electron microscope(FESEM) and a Fourier-transform infrared microspectroscopy(IMS). The argon-plasma treatment caused the only mechanical effect by sputtering of ion bombardment, whereas the oxygen plasma brought about a chemical effect on the PAN fiber surface. The experimental evidences strongly suggested that cyclization of nitrile group and crosslinking were likely to occur in the oxygen-plasma treatment. On the other hand, with the argon-plasma treatment, numerous my pits resulted in ranging from several tens to hundreds nanometers in radius. The plasma sensitivity of functional groups such as C-H, $C{\equiv}N$, and O-C=O groups in the PAN fiber was dependent on their chemical nature of bonding in the oxygen-plasma, in which the ester group was the most sensitive to the plasma. Vacuum-ultraviolet(VUV) radiation emitted during plasma treatment played no substantial role to alter the surface morphology.

A Study on Stabilization and Mechanical Properties of Polyacrylonitrile-based Fiber with Itaconic acid (이타콘산을 함유한 폴리아크릴로니트릴계 전구체섬유의 열안정화 및 그 물성에 관한 연구)

  • 신익기;이신희;박수민
    • Textile Coloration and Finishing
    • /
    • v.15 no.2
    • /
    • pp.76-85
    • /
    • 2003
  • In this study, a continuous stabilization process is used to make high-performance carbon fiber from polyacrylonitrile(PAM)-based fibers. The effect of oxygen content of PAN-based fiber on the stabilization process and the properties of the resultant carbon fibers is investigated. In order to research the progress of stabilization reaction FT-IR, elemental analysis, density, DSC, etc are used. Stabilization is carried out in air atmosphere from the 200 to $300^\circ{C}$ temperature range. An increase of PAN-based fibers diameter reduces the oxygen content during the continuous stabilization process. A higher oxygen content increase the density, tensile strength and modulus in the resultant carbon fibers. The most appropriate oxygen content in the stabilized fiber should be about 12%. Fibers having more than 2% oxygen content yield carbon fibers with inferior properties. Those carbon fibers also have sufficient commercial availability.

Synthesis of Polyacrylonitrile as Precursor for High-Performance Ultrafine Fibrids

  • Kim, Subong;Kuk, Yun-Su;Jin, Fan-Long;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.407-414
    • /
    • 2014
  • Polyacrylonitrile (PAN) copolymers with different methyl acrylate (MA) contents were synthesized via solution polymerization and used as precursors for high-performance PAN ultrafine fibrids. The chemical structures of the copolymers were characterized using Fourier-transform infrared spectroscopy and $^{13}C$ nuclear magnetic resonance spectroscopy. Their particle sizes and aspect ratios increased with increasing viscosity, and the degree of crystallinity increased with decreasing concentration of copolymer solution. In contrast, their peak temperature and heat of exotherm increased with decreasing concentration of the copolymer solution. The aromatization indices (AIs) of the fibrids increased with increasing heat-treatment time; however, the AIs decreased when the heat-treatment temperature was higher than the onset temperature of the copolymers. On the other hand, the crystal sizes of the fibrids decreased with increasing concentration of the copolymer solution when the MA content was held constant.

An overview of new oxidation methods for polyacrylonitrile-based carbon fibers

  • Shin, Hye Kyoung;Park, Mira;Kim, Hak-Yong;Park, Soo-Jin
    • Carbon letters
    • /
    • v.16 no.1
    • /
    • pp.11-18
    • /
    • 2015
  • The process of oxidizing polyacrylonitrile (PAN)-based carbon fibers converts them into an infusible and non-flammable state prior to carbonization. This represents one of the most important stages in determining the mechanical properties of the final carbon fibers, but the most commonly used methods, such as thermal treatment ($200^{\circ}C$ to $300^{\circ}C$), tend to waste a great deal of process time, money, and energy. There is therefore a need to develop more advanced oxidation methods for PAN precursor fibers. In this review, we assess the viability of electron beam, gamma-ray, ultra-violet, and plasma treatments with a view to advancing these areas of research and their industrial application.

Morphology and Properties of Polyacrylonitrile/Na-MMT Nanocomposites Prepared via in-situ Polymerization with Macroazoinitiator

  • Jeong Han-Mo;Choi Mi-Yeon;Ahn Young-Tae
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.312-317
    • /
    • 2006
  • In the preparation of a polyacrylonitrile (PAN)/sodium montmorillonite (Na-MMT) nanocomposite via an in-situ polymerization method, macroazoinitiator (MAI) was intercalated in the gallery of Na-MMT to enhance the delamination of silicate layers by intergallery polymerization. The exfoliated fine dispersion observed by X-ray diffraction pattern and transmission electron microscopy, the enhanced tensile storage modulus and the thermal decomposition temperature showed that the intercalated MAI was effective in inducing intergallery polymerization and that a poly(ethylene glycol) block linked to a PAN block improved the dispersion of hydrophilic Na-MMT in the polymer matrix.

Preparation of Porous Polyacrylonitrile Nanofibers Membrane for the MF Application (MF 적용을 위한 다공성 PAN 나노섬유막의 제조)

  • Ahn, Hyeonryun;Jang, Wongi;Tak, Taemoon;Byun, Hongsik
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.112-118
    • /
    • 2013
  • Polyancrylonitrile nanofiber membrane (PAM) was prepared by using the electrospinning method with a solution of polyacrylonitrile (PAN) in DMF. The pore-diameter of PAMs and the number of PAM's layer were controlled for the microfiltration (MF) application. In addition, in order to improve the water-flux, AN-PEGMA copolymers have been synthesized via free radical polymerization with poly (ethylene glycol) methyl ether methacrylate and azobisisobutylronitrile (AIBN), and then PAN/AN-PEGMA nanofiber membranes (PAM/APM) were prepared by electrospinning with a mixture of PAN (9 wt%) and AN-PEGMA (3 wt%) in DMF (88 wt%). The prepared membranes were investigated with FT-IR and E.D.S. It was confirmed through scanning electron microscope (SEM), porometer, and porosity analysis that the porous membrane with a uniform diameter (400~600 nm) and a uniform pore characteristics (0.5~0.4 ${\mu}m$) was prepared. For the MF application, water-flux measurements were investigated and then the result was shown that the water permeability value of PAM/APMs introduced AN-PEGMA copolymers was relatively higher than that of the PVdF commercial membrane. From these results, PAN nanofiber membranes prepared by electrospinning could be utilized as a MF membrane.