• 제목/요약/키워드: Polyacrylonitrile (PAN)

검색결과 172건 처리시간 0.023초

Photocatalytic degradation and antibacterial investigation of nano synthesized Ag3VO4 particles @PAN nanofibers

  • Saud, Prem Singh;Ghouri, Zafar Khan;Pant, Bishweshwar;An, Taehee;Lee, Joong Hee;Park, Mira;Kim, Hak-Yong
    • Carbon letters
    • /
    • 제18권
    • /
    • pp.30-36
    • /
    • 2016
  • Well-dispersed Ag3VO4 nanoparticles @polyacrylonitrile (PAN) nanofibers were synthesized by an easily controlled, template-free method as a photo-catalyst for the degradation of methylene blue. Their structural, optical, and photocatalytic properties have been studied by X-ray diffraction, transmission electron microscopy, field-emission scanning electron microscopy equipped with rapid energy dispersive analysis of X-ray, photoluminescence, and ultraviolet-visible spectroscopy. The characterization procedures revealed that the obtained material is PAN nanofibers decorated by Ag3VO4 nanoparticles. Photocatalytic degradation of methylene blue investigated in an aqueous solution under irradiation showed 99% degradation of the dye within 75 min. Finally, the antibacterial performance of Ag3VO4 nanoparticles @PAN composite nanofibers was experimentally verified by the destruction of Escherichia coli. These results suggest that the developed inexpensive and functional nanomaterials can serve as a non-precious catalyst for environmental applications.

산화철이 기능화된 산화그래핀을 함유한 PAN 나노섬유 복합분리막의 제조 및 수처리용 분리막으로의 활용 (Preparation of PAN Nanofiber Composite Membrane with $Fe_3O_4$ Functionalized Graphene Oxide and its Application as a Water Treatment Membrane)

  • 장원기;윤재한;변홍식
    • 멤브레인
    • /
    • 제24권2호
    • /
    • pp.151-157
    • /
    • 2014
  • 본 연구에서는, 산화그래핀(GO) 및 산화철이 기능화된 산화그래핀(M-GO)을 용매인 dimethylformamide (DMF)에 초음파분쇄법을 이용하여 완전히 분산시킨 후, 기질고분자인 polyacrylonitrile (PAN)에 첨가하여 전기방사함으로써, 나노섬유형태의 복합분리막을 제조하였다. 제조된 나노섬유 분리막은 적층수를 변화시켜 기공크기를 조절하였다. Scanning Electron Microscope (SEM) 분석 결과로부터 약 500 nm 크기의 고른 직경분포를 가진 나노섬유 복합분리막이 제조되었음을 확인하였다. 또한, Raman spectroscopy 분석과 Energy Dispersive x-ray Spectroscopy (EDS) 분석 결과로부터 GO 및 M-GO가 분리막 내에 분산되어 있음을 확인하였다. 최종 나노섬유 복합분리막은 상용막($0.27{\mu}m$, 55%)과 유사한 기공특성($0.21{\sim}0.24{\mu}m$, 40%)을 보여주었으며, 수투과도 측정결과 PAN 막에 비해 약 200% 향상된 성능을 보여주었다. 이러한 결과로부터, 전기방사법으로 제조된 나노섬유 복합분리막은 수처리용 분리막으로서 충분한 활용가능성이 있다고 판단된다.

리튬이차전지용 고분전해질의 무기물의 첨가에 대한 영향 (The Effect of Inorganic Material in Polymer Electrolyte for Lithium Secondary Battery)

  • 박수길;박종은;이홍기;이주성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.822-824
    • /
    • 1998
  • The lithium polymer battery with polymer electrolyte is expected as a safe and long cycle life battery. This paper reports primarily the recent development results of a solid polymer electrolyte, which is a key point of the secondary battery system. The new type of polymer electrolyte was prepared under a dry Ar atmosphere by dissolving $LiCIO_4$ in a matrix of EC, PC and then dispersing polyacrylonitrile(PAN). Also adding some inorganic filler $Al_2O_3$. The dispersed solution heated at $120^{\circ}C$. The polymer electrolyte were characterized by EIS(Electrochemical Impedance Spectroscopy), TGA(Thermo Gravimetric analysis), DMA(Dynamic Mechanical Analyzer), DSC (Differential Scanning Calorimetry). The lithium ion yield is 0.29 when PAN-$Al_2O_3$ which was applied DC 5mV. The ionic conductivity of PAN, PAN-$Al_2O_3$ polymer electrolytes were showed $1.0{\times}10^{-4}S/cm$, $8.4{\times}10^{-4}S/cm$ at room temperature. When inorganic filler was added in the polymer electrolyte, ionic conductivity and lithium yield more larger than without inorganic filler.

  • PDF

Effect of additional heat-treatment temperature on chemical, microstructural, mechanical, and electrical properties of commercial PAN-based carbon fibers

  • Cho, Dong-Hwan;Yoon, Sung-Bong;Cho, Chae-Wook;Park, Jong-Kyoo
    • Carbon letters
    • /
    • 제12권4호
    • /
    • pp.223-228
    • /
    • 2011
  • In this present work, the effect of additional heat-treatment (AHT) in the range from $1800^{\circ}C$ to $2400^{\circ}C$ on the chemical composition, morphology, microstructure, tensile properties, electrical resistivity, and thermal stability of commercial polyacrylonitrile (PAN)-based carbon fibers was explored by means of elemental analysis, electron microscopy, X-ray diffraction analysis, single fiber tensile testing, two-probe electrical resistivity testing, and thermogravimetric analysis (TGA). The characterization results were in agreement with each other. The results clearly demonstrated that AHTs up to $2400^{\circ}C$ played a significant role in further contributing not only to the enhancement of carbon content, fiber morphology, and tensile modulus, but also to the reduction of fiber diameter, inter-graphene layer distance, and electrical resistivity of "as-received" carbon fibers without AHT. The present study suggests that key properties of commercial PAN-based carbon fibers of an intermediate grade can be further improved by proprietarily adding heat-treatment without applying tension in a batch process.

Manufacturing and characteristics of PAN-based composite carbon fibers containing cellulose particles

  • Yang, Jee-Woo;Jin, Da Young;Lee, Ji Eun;Lee, Seung Goo;Park, Won Ho
    • Carbon letters
    • /
    • 제16권3호
    • /
    • pp.203-210
    • /
    • 2015
  • This study fabricated low thermal conductive polyacrylonitrile (PAN)-based carbon fibers containing cellulose particles while maintaining their mechanical properties. The high thermal conductivity of carbon fibers limits their application as a high temperature insulator in various systems such as an insulator for propulsion parts in aerospace or missile systems. By controlling process parameters such as the heat treatment temperature of the cellulose particles and the amount of cellulose added, the thermal and mechanical properties of the PAN-based carbon fibers were investigated. The results show that it is possible to manufacture composite carbon fibers with low thermal conductivity. That is, thermal conductivities were reduced by the cellulose particles in the PAN based carbon fibers while at the same time, the tensile strength loss was minimized, and the tensile modulus increased.

Synthesis and Characterization of Acrylic Polymer Containing Silk Protein

  • Zhongmin Chen;Kim, Mutsumi ura;Masahiro Suzuki;Yoshiyuki Kondo;Kenji Hanabusa;Hirofusa Shirai
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 The Korea-Japan Joint Symposium
    • /
    • pp.87-87
    • /
    • 2003
  • Three kinds of acrylic polymers containing silk protein were synthesized, which are (1) blending of silk fibroin (SF) fiber and polyacrylonitrile (PAN); (2) graft-copolymer of PAN onto SFs; (3) random-copolymer synthesized by copolymerization of acrylonitrile (AN) and silk fibroin peptide (SFP) with vinyl groups, and their solubility, thermal property, and moisture absorption was investigated, respectively. These polymers have difference solubility and attributable to their structure. Their excellent thermal stabilities and better moisture absorptions were indicated.

  • PDF

고온 연신 열처리 탄소섬유의 구조 고찰 (Some Consideration on Structure of Carbon fibers during Hot Stretching)

  • 김홍수
    • 한국재료학회지
    • /
    • 제9권1호
    • /
    • pp.30-34
    • /
    • 1999
  • A polyacrylonitrile(PAN)-based carbon fiber tow was heat-treated by directly passing electric current through the tow. The effects of the stretching stress applied during high temperature heat-treatment of PAN-based carbon fibers were investigated by measuring the electric resistance changes taking place during the internal resistance heating. The structure parameters characterizing the stacks of carbon layer, such as interlayer spacing, sizes and orientation of the carbon fibers heat-treated with hot-stretching were evaluated as a function of surface temperature of tow during heat treatment in the range of $1000~2400^{\circ}C$. Though the layer extent in the fiber axis direction depends strongly on the electric resistance, the changes in a crystallite parameter is independent of the longitudinal strain.

  • PDF

아크릴 중합체 및 아크릴-이타코닉산 공중합체/ 디메틸술폭시드 용액의 유변학적 특성의 시간의존성 (Time Dependence of the Rheological Properties of the Solutions of Polyacrylontrile and Acrylonitrile-Itaconic Acid Copolymer in Dimethyl sulfoxide)

  • 이남순
    • 한국염색가공학회지
    • /
    • 제13권6호
    • /
    • pp.435-440
    • /
    • 2001
  • This study investigates the rheological properties of in-situ polymerized solutions of polyacrylonitrile(PAN) and acrylonitrile(AN) -itaconic acid(IA) in dimethyl sulfoxide(DMSO) in terms of temperature, concentration, and time. The complex viscosity and storage modulus of the solutions were generally increased with elapsing time, which is ascribable to the three-dimensional pseudostructures formed by strong inter- or Intra-molecular attractions through Polar -CN and -COOH groups. The three-dimensional pseudonetworks would lead to relation of the acrylic solutions in long term. This was more noticeable at higher temperature within the temperature range examined. In the case of 20% solutions one can not observe lower Newtonian flow region in the viscosity curve. Disappearance of lower Newtonian flow region is indicative of heterogeneity of the solution system. Casson Plot of the viscosity data revealed that 20% solutions of PAN and AN-IA copolymer in DMSO clearly demonstrated positive yield stress, ascertaining formation of pseudostructures in the solution systems.

  • PDF

아크릴 중합체 및 아크릴-이타코닉산 공중합체/디메틸술폭시드 용액의 유변학적 특성의 시간의존성 (Time Dependence of the Rheological Properties of the Solutions of Polyacrylontrile and Acrylonitrile-Itaconic Acid Copolymer in Dimethyl sulfoxide)

  • 이남순
    • 한국염색가공학회지
    • /
    • 제13권6호
    • /
    • pp.77-77
    • /
    • 2001
  • This study investigates the rheological properties of in-situ polymerized solutions of polyacrylonitrile(PAN) and acrylonitrile(AN)-itaconic acid(IA) in dimethyl sulfoxide(DMSO) in terms of temperature, concentration, and time. The complex viscosity and storage modulus of the solutions were generally increased with elapsing time, which is ascribable to the three-dimensional pseudostructures formed by strong inter- or intra-molecular attractions through Polar -CN and -COOH groups. The three-dimensional pseudonetworks would lead to gelation of the acrylic solutions in long term. This was more noticeable at higher temperature within the temperature range examined. In the case of 20% solutions one can not observe lower Newtonian flow region in the viscosity curve. Disappearance of lower Newtonian flow region is indicative of heterogeneity of the solution system. Casson Plot of the viscosity data revealed that 20% solutions of PAN and AN-IA copolymer in DMSO clearly demonstrated positive yield stress, ascertaining formation of pseudostructures in the solution systems.

PAN계 탄소섬유의 Hopping 전도기구에 관한 연구 (A Study on the Hopping Conducting Mechanism in PAN Carbon Fiber)

  • 한세원;이희웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.65-67
    • /
    • 1989
  • To study hopping conducting mechanism in PAN(polyacrylonitrile) carbon fiber, the temperature and frequency dependence of electrical conductivity and magnetoresistance characteristics were investigated. Electrical conductivity in the range of $60^{\circ}K-300^{\circ}K$ show VRH(variable range hopping) properties which introduced by Mott's theory, and also such properties can be explained by the frequency dependence of electrical conductivity below $5{\times}10^6$ Hz. The negative magnetoresistance observed below 35KG magnetic field, and the properties difference between M40 and T300 with increasing magnetic field is supposed due to on effect connected with crystalline state and orientation of structure.

  • PDF