• Title/Summary/Keyword: Poly-acetate

Search Result 246, Processing Time 0.025 seconds

A Study on Emulsion Copolymerization of $\alpha,\omega$-Diacrylate Poly(dimethylsiloxane) Containing Vinyl Ester of Versatic Acid/Vinyl Acetate (Versatic Acid/vinyl Acetate의 비닐 에스테르를 가지는 $\alpha$,$\omega$-Diacrylate Poly(dimethylsiloxane)의 에멀션 공중합 연구)

  • Naghash, Hamid Javaherian;Mallakpour, Shadpour;Forushani, Parivash Yavari;Uyanik, Nurseli
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.95-102
    • /
    • 2008
  • The $\alpha$,$omega$-diacrylate poly(dimethylsiloxane) (DA-PDMS) containing vinyl ester of versatic acid/vinyl acetate (Veova-10/VAc) was prepared by emulsion copolymerization of (DA-PDMS), Veova-10 (with VAc), and auxiliary agents at $85^{\circ}C$ in the presence of ammonium peroxodisulfate (APS) as an initiator. Sodium dodecyl sulfate (SDS) and nonylphenol ethylene oxide-40 units (NP-40) were used as anionic and nonionic emulsifiers, respectively. The resulting copolymers were characterized by using Fourier transform infrared spectroscopy (FT-IR). Thermal properties of the copolymers were studied by using thermogravimetric analysis(TGA) and differential scanning calorimetry (DSC). The morphology of copolymers was also investigated by scanning electron microscopy (SEM) and then the effects of variables such as temperature, agitation speed, surfactant kinds, molecular weights, initiator, and DA-PDMS concentrations on the properties of the silicone-containing Veova-10/VAc emulsions were examined. The calculation of monomer conversion versus time histories indicates that by increasing the DA-PDMS concentration the polymerization rate and the number of polymer particles decrease, respectively.

Preparation of Poly(Vinyl Acetate) in the Presence of Supercritical Carbon Dioxide (초임계이산화탄소를 이용한 폴리비닐아세테이트 합성)

  • Paek, Sang-Min;Noh, Seok-Kyun;Lyoo, Won Seok;Shim, Jae-Jin
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.191-197
    • /
    • 2006
  • Polymerization in supercritical carbon dioxide has been getting attention since it is easier to separate the remaining reactants from product polymer and since it is a cleaner process that produces neither wastewater nor air pollutants, compared to the conventional polymerization processes. In this study, poly(vinyl acetate) (PVAc) that is necessary in producing poly(vinyl alcohol) (PVA) with a lot of industrial applications was manufactured in the presence of supercritical carbon dioxide for the second time in the world. A poly(dimethylsiloxane)(PDMS)-derivative surfactant and three initiators were employed in the polymerization of vinyl acetate (VAc) at 338.15 K and 34.5 MPa. Investigation was carried out to find out the effect of the amounts and types of initiators and surfactants as well as the effect of reaction time on the yield and the molecular weight of PVAc. The weight average molecular weight (Mw) of PVAc was in the range of 60,000 ~ 140,000 g/mol, and the number average molecular weight was in the range of 30,000 ~ 70,000 g/mol. The yield of PVAc was spread over 10 ~ 80%, based on the amount of VAc monomer.

  • PDF

A Study on Joining of 3D Thermoset and Biodegradable Polymers (열경화성 3D 프린트 몰드와 생분해성 소재 접합에 관한 연구)

  • Yoon, Sung Chul;Ma, Jae Kwon;Bang, Dae Wook;Choi, Hae Woon
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.20-25
    • /
    • 2014
  • Laser heat source was applied on 3D poly urethane model built by 3D printer and cellulous acetate for joining. A diode laser with 808nm wavelength was transmitted through the 3D model and applied on the boundary of ABS/Acetate and 3D poly urethane model. Based on the experimental result, the ABS and 3D built poly-urethane polymers was successfully joined, but the mechanical strength was not enough at the joining boundaries in the range of 6watt to 8watt of laser heat source. However, biodegradable acetate was successfully joined without damaging the 3D built model and mechanical strength was properly achieved. The optimum laser power was found between 5watt and 8watt with scanning speed of 500mm/min, 700mm/min and 1,000mm/min. Based on the SEM analysis the filling mechanism was that the applied pressure on 3D built model squeezed the fluidic thermoplastics, ABS and acetate, into the structure of 3D model. Therefore soundness of joining was strongly depending on the viscosity of thermoplastics in polymers. The developed laser process is expected to increase productivity and minimize the cost for the final products.

Preparation of Colored Electrophoretic Nanoparticles by Emusifier-Free Emulsion Polymerization and Reactive Dyeing (무유화 에멀젼 공중합법과 반응염법을 이용한 전기영동 고분자 컬러나노입자의 제조)

  • Chon, Jin-A;Ha, Jae-Hee;Lim, Min-Ho;Kwon, Yong-Ku
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.491-494
    • /
    • 2010
  • Colored, electrophoretic polymer nanoparticles of poly (styrene-co-divinylbenzene-co-vinyl acetate)[poly(St-co-DVB-co-VAc)] were prepared by emulsifier-free emulsion co-polymerization and reactive dyeing. The emulsifier-free emulsion polymerization of styrene, divinyl benzene and vinyl acetate was carried out at $70^{\circ}C$ for 20 hrs to obtain monodisperse polymer nanoparticles of poly(St-co-DVB-co-VAc) with an average diameter of 180~200 nm. These nanoparticles were transformed into poly(styrene-co-divinylbenzene-co-vinyl alcohol) [poly(St-co-DVB-co-VA)] nanoparticles through the saponification reaction. The poly(St-co-DVB-co-VA) nanoparticles were treated with reactive dyes to obtain the colored, monodisperse electrophoretic nanoparticles, and their morphology and surface charge were characterized by scanning electron microscopy, differential scanning calorimetry, UV/Vis absorbance and zeta-potentiometry.

Controlled Rrelease of Indomethacin using Biodegradable Polymer Microspheres (생분해성 고분자 미세구를 이용한 indomethacin의 방출제어)

  • Lim, Seung;Lee, Ki-Young;Lee, Moo-Sung;Choi, Chang-Nam;Kim, Young-Dae
    • KSBB Journal
    • /
    • v.16 no.5
    • /
    • pp.505-510
    • /
    • 2001
  • The preparation, characterization and drug release behaviour of drug(indomethacin) loaded Poly(L-lactic acid)(PLA), tarmarind acetate and levan acetate mircospheres were investigated. Hydrophobic tarmarind acetate and levan acetate were prepared by chemical modification of hydrophilic tarmaried gum and levan and microspheres were made by a solvent evaporation method. In the case of poly(L-lactic acid) microspheres, drug release rate was effected by polymer-drug ratios and drum release was sustained by increasing of polymer content. The yield of microspheres were effected by many factors and the mean size was below 1 $\mu$m, The IND release profiles from tarmarind acetate and levan acetate micropheres were more slightly less than ploy(L-lactic acid) microspheres.

  • PDF

Gas Permeation Properties of Polymeric Membranes for Biosensor Prepared from Poly(vinyl chloride) Derivatives (Poly(vinyl chloride) 유도체로부터 제조된 바이오센서용 고분자막의 기체 투과특성)

  • Lim, Chun-Won;Kim, Wan-Young;Lee, Youn-Sik;Yoon, Jeong-Won;Jeong, Yong-Seob
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.362-366
    • /
    • 1999
  • Membranes for biosensor were prepared from poly(vinyl chloride) (PVC)l derivatives using the solution casting method, and their gas permeabilities were studied. The polymer membranes dried slowly in air showed higher permeability coefficients than those dried in vacuum. The permeabilily coefficients of carboxylated poly(vinyl chloride) (CPVC) membranes for $O_2$ and $CO_2$ decreased as the pressure of the feed gas increased. The addition of dioctylphthalate (DOP) enhanced the permeation rates for $O_2$ and $CO_2$. For example, the permeability coefficients of CPVC membranes containing 30 wt. % DOP for $O_2$ and $CO_2$ at 100 psig were 2.03 and 0.96 Barrer, respectively, which were about 4~5 times higher than those of the membranes without DOP. Poly(vinyl chloride-co-vinyl acetate-co-vinyl alcohol) (Syn-PVCAcAl) obtained by hydrolysis of poly(vinyl chloride-co-vinyl acetate (PVCA) showed a higher permeability coefficient for $CO_2$ in the presence of DOP than that for commercial PVCAcAl, but did not show any significant difference in permeability for $O_2$.

  • PDF

Effect of Plasticizer on Physical Properties of Poly(vinyl acetate-co-ethylene) Emulsion (Poly(vinyl acetate-co-ethylene) 에멀젼 물성에 대한 가소제 효과)

  • Choi, Yong-Hae;Lee, Won-Ki
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.459-463
    • /
    • 2009
  • In this study, physical properties of poly(vinyl acetate-co-ethylene) (VAE) emulsion were investigated by adding different amounts of di-butyl phthalate (DBP) which is a common plasticizer of VAE. The glass transition temperature $(T_g)$ of the dried plasticized VAE emulsion film, which measured by Differential Scanning Calorimeter, was decreased with increasing the DBP contents while the viscosity of the plasticized VAE emulsion was increased with the DBP contents. These results suggest that the plasticizer in the dried VAE film can prevent the strong interaction between chains, resulted by the decrease of $T_g$. In the emulsion, however, the particle sizes were swelled by the penetration of plasticizers and then its viscosity increased with the DBP content. When the DBP was added, the mechanical properties of the plasticized VAE films, such as tensile strength, elongation and creep resistance, were decreased while the water resistance was increased.

Physical Properties of Functionalized Graphene Sheet/Poly(ethylene-co-vinyl acetate) Composites (관능화 그래핀 쉬트/에틸렌-비닐아세테이트 공중합체 복합재료의 물성)

  • Lee, Ki Suk;Kim, Jeong Ho;Jeong, Han Mo
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.307-313
    • /
    • 2014
  • The physical properties of functionalized graphene sheet (FGS)/poly(ethylene-co-vinyl acetate) (EVA) was examined with various kinds of EVA, having vinyl acetate (VA) contents in the range of 0 to 40 wt%. The compatibility between FGS and EVA was enhanced as the polar VA content of EVA increased. Thus, the dispersion of FGS in EVA became finer, and the decrease of surface resistivity and the increase of tensile modulus by the added FGS became more effective when the VA content of EVA was high. When the VA content was low, the elongation at break was reduced drastically by added FGS due to the poor adhesion of FGS/EVA interface. The crystallization of EVA was generally retarded by the interaction with dispersed FGS. However, when both the VA content of EVA and the added amount of FGS were low, the crystallization of EVA was enhanced, probably due to the predominant nucleating effect by FGS.