• Title/Summary/Keyword: Poly-N-vinylcarbazole

Search Result 50, Processing Time 0.031 seconds

Properties of the Phosphorous Polymer Light Emitting Diodes with PVK:Ir(ppy)$_3$ Emission layer (PVK:Ir(ppy)$_3$ 발광부를 갖는 고분자 인광 발광다이오드의 특성평가)

  • Baek, Seung-Jun;Gong, Su-Cheol;Lee, Ho-Sub;Jang, Seong-Kyu;Chang, Ho-Jung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.363-365
    • /
    • 2010
  • 고분자 발광다이오드(polymer light emitting diode, PLED)는 초박막화, 초경량화가 가능하며 간단한 용액공정 으로 향후 휨성(flexible) 디스플레이로의 응용이 가능할 것으로 기대되고 있다. 본 연구에서는 녹색 고분자 유기 발광다이오드를 제작하고, 효율을 향상 시키고자 이중 발광층을 두어 전기 광학적 특성을 평가하였다. ITO/Glass기판 위에 정공주입층으로 PEDOT:PSS [poly(3,4-ethylenedio xythiophene):poly(styrene sulfolnate)]를 발광물질로는 형광 발광물질인 PVK(poly-vinylcarbazole)와 인광 발광 물질인 Ir(ppy)$_3$[tris(2-phenylpyridine) iridium(III)]를 각각 host와 dopant로 사용하였다. 정공 차단층 및 전자 수송층 두 개의 역할로 사용 가능한 TPBI(1,3,5-tris(2-N-phenylbenzimidazolyl) benzene)를 진공 열증착법으로 막을 형성하였다. 전자주입층으로 LiF(lithium flouride)와 음극으로 Al(aluminum)을 증착하여 최종적으로 ITO/PEDOT:PSS/PVK:Ir(ppy)$_3$/TPBI/LiF/Al 구조를 갖는 녹색 형광:인광 혼합 유기 발광 다이오드를 제작하였다.

  • PDF

Organic Light Emitting Diodes (OLED) with Electrostatic spray deposition (ESD)

  • Hwang, Won-Tae;Kim, Nam-Hun;Xin, Guoqing;Jang, Hae-Gyu;Chae, Hee-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.432-432
    • /
    • 2010
  • Organic light emitting diodes (OLED) thin films were fabricated by Electrostatic spray deposition (ESD). In this study, we reported the thickness, morphology, current efficiency, luminescence of OLED fabricated by ESD. These results were compared with the spin coating method, and showed that also ESD is a good fabrication method for OLED because of its characteristics similar with the results using spin coating. The active layer consists of organic blends with Poly(N-vinylcarbazole) (PVK), 2-(4-Biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), N,N'-Bis(3-methylphenyl) -N,N'-bis(phenyl)-benzidine (TPD), Tris(2-phenylpyridine)iridium(III) (Ir(ppy)3), and the structure of OLED consists of aluminum (Al), lithium fluoride (LiF), organic blends, PEDOT:PSS and Indium-tin-oxide (ITO), which was used as the top cathode, cathode interfacial layer, emitting layer and bottom anode, respectively. The results suggest that Electrostatic spray deposition is a promising method for the next generation of OLED fabrication since it has a probability fabricating large-area thin films.

  • PDF

Optical properties of Stibenequinone derivatives in PVK organic electroluminescence (PVK 유기 EL에서 Stibenequinone 유도체의 광학적 특성)

  • Cho, Chong-Rae;You, Jung-Yi;Yang, Jong-Heon;Shin, Sang-Sik;Son, Se-Mo;Chung, Su-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1047-1049
    • /
    • 2003
  • Stibenequinone(SQ) derivative which was electronic transportation materials in Poly(N-vinylcarbazole) (PVK)-based on organic EL and an optical characteristic of organic EL which is mentioned previously was investigated. The Photoluminescence highest pick with blending TBSQ with PVK was shifted from 439nm to 517nm. This result indicates that an energy gap of a PVK/TBSQ blended sample is less than an energy gap of PVK. According to the electrochemistry characteristic, the ionization energy(Ip) and the electro affinity(Ea) decreased from 5.79eV to 5.63eV and 2.23eV to 2.63eV, respectively.

  • PDF

Characteristics of blue phosphorescent OLED with PVK host layer. (PVK Host를 이용한 청색인광 OLED의 특성)

  • Lee, Sun-Hee;Jo, Min-Ji;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.153-153
    • /
    • 2010
  • We have developed blue phosphorescent organic light emitting diode using spin-coated poly(9-vinylcarbazole) (PVK) host layer doped with blue phosphorescent material, Iridium(III) bis(4,6-difluorophenyl)-pyridinato-N,C2) picolinate (FIrpic). the concentration of FIrpic dopants was varied from 2% to 10%. The electrical and optical characteristics of the blue phosphorescent OLED with PVK:FIrpic layer were investigated.

  • PDF

Exciplex emission in bilayer Light-emitting device

  • Liang, Yu-Jun;Zhang, Hong-Jie;Han, Sang-Do;Jung, Young-Ho;Taxak, Vinod Bala
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.762-765
    • /
    • 2002
  • The bilayer organic light-emitting diode using Al (DBM) $_3$ (DBM=Dibenzoylmethane) as an emitting material and poly (N-vinylcarbazole) (PVK) as hole-transport material, emitted bright blue-green light instead of blue light. The blue-green emission is attributed to exciplex formation at the solid interface between Al (DBM) $_3$ and the hole-transport material. The exciplex formation was evidenced by the measurement of the photoluminescence spectra and lifetimes of Al (DBM) $_3$, PVK and an equimolar amount of mixture of Al (DBM) $_3$ and PVK.

  • PDF

폴리머-ZnO 양자점 나노 복합체에 그래핀층을 삽입한 UV 광탐지기의 광전류 향상

  • Yang, Hui-Yeon;Kim, Tae-Hwan;Lee, Jeong-Min;Park, Won-Il
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.428-428
    • /
    • 2012
  • ZnO 나노 구조는 화학적으로 안정하고 큰 엑시톤 에너지를 가지는 성질 때문에 청색 영역에서 작동하는 광전소자의 제작에 대단히 유용하다. ZnO 나노 구조중에서 ZnO 나노 입자는 UV 광탐지기 소자가 작동하는 영역에서 광반응이 매우 민감하여 연구가 많이 진행되고 있다[1]. 그래핀은 높은 전도도, 투명도 및 화학적, 열적 안정성이 뛰어난 독특한 물리적 특성을 가지고 있기 때문에 차세대 전자소자와 광전소자의 우수한 소재로 각광 받고 있다[2,3]. 본 연구에서는 UV 광탐지기에서 뛰어난 특성을 보이는 ZnO 양자점을 포함된 poly-N-vinylcarbazole (PVK) 층에 전기적 특성이 뛰어난 그래핀 층을 삽입하여 UV 광탐지기의 광전류를 향상 시키는 연구를 하였다. PVK 표면에 ZnO 양자점이 붙어서 형성되어 있는 모습과 그래핀 층에 PVK와 ZnO QD가 붙어있는 것을 투사 전자 현미경을 통하여 관찰 하였다. 전류-접압 측정을 하여 암전류와 광전류의 차이가 많이 나는 것을 알 수 있었다. 그래핀 층을 삽입한 광탐지기 소자에서 광전류가 향상되는 것을 알 수 있었다.

  • PDF

The Study on the Improved Quantum Efficiency of the PVK:Bu-PBD:C6 Single Layer Green Light Emitting Devices (PVK:Bu-PBD:C6 단일층 녹색발광소자의 양자효율 개선에 관한 연구)

  • 조재영;노병규;오환술
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.11
    • /
    • pp.922-927
    • /
    • 2001
  • Single-layer green ELs was fabricated with using molecularly-dispersed Bu-PBD into poly-N-vinylcarbazole(PVK) which has low operating voltage and high quantum efficiency. A EL cell structure of glass substrate/indium-tin-oxide/PVK:Bu-PBD:C6(∼ 100nm)/Ca(20nm)/Al(20nm) was employed with variable doping concentration. The keys to obtain high quantum efficiency was excellent film forming capability of molecularly dispersed into PVK and appropriate combination of cathode for avoiding exciplex. We obtained the turn-on voltage of 4.2V and quantum efficiency of 0.52% at 0.lmol% of C6 concentration which has been improved about a factor of 50 in comparison with the undoped cell. The PL peak wavelengths wouldn\`t be turned by changing the concentration of the C6 dopant. Green EL emission peak and FWHM were 520nm and 70nm respectively. PL emission peak was obtained at 495nm.

  • PDF

Fabrication of the Electroluminescence Devices with Al electrode deposited by DC sputtering (DC 스퍼터링 증착에 의한 AI 전극을 갖는 전계발광소자 제작)

  • 윤석범
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.376-382
    • /
    • 2000
  • We successfully fabricated OLED(Organic Light Emitting Diodes) with Al cathodes electrode deposited by the DC magnetron sputtering. The effects of a controlled Al cathode layer of an Indium Tin Oxide (ITO)/blended single polymer layer (PVK Bu:PBD:dye)/Al light emitting diodes are described. The PVK (Poly(N-vinylcarbazole)) and Bu-PBD (2-(4-biphenyl-phenyl)-1,3,4-oxadiazole) are used hole transport polymer and electron transport molecule respectively. We found that both current injection and electroluminescence output are significantly different with a variable DC sputtering power. The difference is believed to be due to the influence near the blended polymer layer/cathode interface that results from the DC power and H$\sub$2//O in a chamber. And DC sputtering deposition is an effective way to fabricate Al electrodes with pronounced orientational characteristics without damage occurring to metal-organic interface during the sputtering deposition.

  • PDF

Improvement of external quantum efficiency of EL devices with PVK/P3DoDT blends using as a emitting layer (PVK/P3DoDT 블랜드를 발광층으로 사용한 EL 소자의 발광효율 향상에 관한 연구)

  • Kim, Ju-Seung;Seo, Bu-Wan;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.96-99
    • /
    • 2000
  • We fabricated electroluminescent(EL) devices which have a blended single emitting layer containing poly(N-vinylcarbazole)[PVK] and poly(3-dodecylthiophene)[P3DoDT]. The molar ratio between P3DoDT and PVK changed with 1:0, 2:1 and 1:1. To improve the external quantum efficiency of EL devices, we applied insulating layer, LiF layer, between polymer emitting layer and Al electrode. All of the devices emit orange-red light and its can be explained that the energy transfer occurs from PVK to P3DoDT. In the voltage-current and voltage-light power characteristics of devices applied LiF layer, current and light power drastically increased with increasing applied voltage. In the consequence of the result, the external quantum efficiency of the devices that have a molar ratio 1:1 with LiF layer was 35 times larger than that of the device without LiF layer at 6V.

  • PDF