• 제목/요약/키워드: Poly-Crystal Diamond(PCD)

검색결과 7건 처리시간 0.021초

다이아몬드 공구의 절삭거리에 따른 정밀가공 특성 연구 (A Study on the Precision Cutting Characteristics by the Diamond Tool on the Cutting Distance)

  • 유기현;정진용
    • 한국생산제조학회지
    • /
    • 제7권5호
    • /
    • pp.127-133
    • /
    • 1998
  • This research intends to gain the sight for the qualitative characteristics of precision cutting by using the CNC lathe with a mono-crystal diamond(MCD) and a poly-crystal diamond(PCD) tool on the cutting distance. In case of an MCD tool, as the cutting distance increases, the surface roughness becomes worse and the standard deviation of surface roughness is small. In case of a PCD tool, as the cutting distance increases, the surface roughness becomes stable with a large standard deviation. The cutting force ratio(Ft/Fn) decreases as the nose radius increases and the decreasing ratio becomes larger for small nose radius.

  • PDF

니켈절삭시 CBN, 소결 및 단결정 다이아몬드 공구의 마멸과 예측에 관한 연구 (A Study on the Tool Wear and Prediction of CBN, Poly Crystal and Single Crystal Diamond Tools in Cutting of Nickel)

  • 성기석;김정두
    • 대한기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.120-130
    • /
    • 1993
  • 본 연구에서는 니켈의 가공시 나타나는 공구의 마멸에 대한 정량화 및 절삭변 수와의 연관성에 대한 연구는 그 자체가 마멸에 대한 데이터 베이스 측면에서 중요하 고, 이러한 접근방법으로는 연구가 거의 이루어지지 않았다는 측면에서도 큰 의미를 갖는다. 본 연구는 특히 경도가 큰 공구인 CBN, 소결 다이아몬드(poly crystal dia- mond 이하 PCD), 단결정 다이아몬드(single crystal diamond 이하 SCD)공구를 사용하 여 니켈의 절삭에서 나타나는 공구의 마멸에 대한 분석을 선행한 후 수집한 정보로부 터 절삭속도, 이송, 절삭깊이 및 공구의 nose반경이 공구의 마멸 및 표면의 성상(su- rface quality)에 미치는 영향에 대하여 고찰하였고 절삭조건의 변화에 따라 마멸에 대한 예상 곡선을 구하였다.

절인반경차이에 따른 연질재료의 정밀가공 특성 연구 (A Study on the Precision Cutting Characteristics for Different Cutting Edge Radii in Ductile Material)

  • 권용기
    • 한국생산제조학회지
    • /
    • 제9권1호
    • /
    • pp.75-80
    • /
    • 2000
  • This paper deals with the precision cutting characteristics of mono-crystal diamonds poly-crystal diamonds and tungsten carbide tool on ductile material. The cutting tests were carried out under various uncut chip areas and 20${\mu}{\textrm}{m}$ depth of engagement. The machinability in precision machining was discussed from the viewpoints of the normal cutting forces and the surface roughness of the workpiece. As the feed rate decreases the normal force difference for cutting edge radii appears to large. In various cutting edge radii the surface roughness difference when cut the copper which is ductile material than the aluminium alloy is large. As the same cutting condition the hardness value on cut surface with the diamond tool appears to be smaller than that of the tungsten carbide tool.

  • PDF

평삭공정에서 경면가공을 위한 단결정 및 다결정 다이아몬드 다중공구의 가공성 평가 (Comparison of Machinability Between PCD Tool and SCD Tool for Large Area Mirror Surface Machining Using Multi-tool by Planer)

  • 김창의;최환진;전은채;제태진;강명창
    • 한국분말재료학회지
    • /
    • 제20권4호
    • /
    • pp.297-301
    • /
    • 2013
  • Mirror surface machining for large area flattening in the display field has a problem such as a tool wear and a increase in machining time due to large area machining. It should be studied to decrease machining time and tool wear. In this paper, multi-tool machining method using a PCD tool and a SCD tool was applied in order to decrease machining time and tool wear. Machining characteristics (cutting force, machined surface and surface roughness) of PCD tool and SCD tool were evaluated in order to apply PCD tool to flattening machining. Based on basic experiments, the PCD/SCD multi-tool method and the SCD single-tool method were compared through surface roughness and machining time for appllying large area mold machining.

초정밀가공기를 이용한 무산소동 절삭특성 (Cutting Characteristics of Oxygen-Free Using the Ultra Precision Machining)

  • 고준빈;김건희;원종호
    • 한국정밀공학회지
    • /
    • 제19권12호
    • /
    • pp.120-126
    • /
    • 2002
  • The needs of ultra-precisely machined parts are increasing more and more. But the experimental data required to ultra precision machining of nonferrous metal is insufficient. The behavior of cutting in micro cutting area is different from that of traditional cutting because of the size effect. Copper is widely used as optical parts such as LASER reflector's mirror and multimedia instrument. In experimental, after oxygen-free copper is machined by ultra precision machine with natural mono crystal diamond tool (NCD) and synthetic poly crystal diamond tool (PCD), we compared chip formation and tool's wear according to used tool. Also, we researched optimized cutting condition with the results measured according to cutting condition such as spindle speed, feed rate and depth of cut. As a result, the optimal working condition that makes good surface roughness is obtained. The surface roughness is good when spindle speed is above 80 m/min, and feed rate is small and depth of cut is above 0.5 ${\mu}{\textrm}{m}$. In cutting of klystron anode and cavity 3.2 nmRa of surface roughness is obtained.

실리콘의 화학기계적 미세가공 특성 (Characterization of the Chemical Mechanical Micro Machining for Single Crystal Silicon)

  • 정상철;박준민;이현우;정해도
    • 한국정밀공학회지
    • /
    • 제19권1호
    • /
    • pp.186-195
    • /
    • 2002
  • The mechanism of micro machining of reacted layer on silicon surface were proposed. The depth of reacted layer and the change of mechanical property were measured and analyzed. Depth of hydrated layer which is created on the surface of silicon by potassium hydrate was analyzed with SEM and XPS. The decrease of the micro victors hardness of silicon surface was shown with the increase of the concentration of potassium hydrate and the change of the dynamic friction coefficient by chemical reacted layer was measured due to the readiness of machining. The experiment of groove machining was done with 3-axis machine with constant load. With chemical mechanical micro machining the surface crack and burrs generated by both brittle and ductile micro machining were diminished. And the surface profile and groove depth was shown in accordance with the machining speed and reaction time with SEM and AFM.