• Title/Summary/Keyword: Poly-$\beta$-hydroxybutyrate(PHB)

Search Result 34, Processing Time 0.022 seconds

Isolation and Characterization of a Methylotroph Producing 3-hydroxybutyrate-3-hydroxyvalerate Copolymer

  • JUNG HOE KIM;KIM, PIL;SEON WON KIM;GYUN MIN LEE;HYUN SOO LEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.167-171
    • /
    • 1995
  • A bacterial strain C-02 using methanol as a carbon source was isolated from Gumi Industrial Estate and selected based on its rapid growth and capability of poly-$\beta$-hydroxybutyrate accumulation. Characteristics of strain C-02 showed that it belongs to the Methylococcaceae family, Type II subgroup. Strain C-02 could incorporate valerate into the PHB chain to form 3-hydroxybutyrate and 3-hydroxyvalerate (P(3HB-co-3HV)). Among various nutrient limitation tests, the nitrogen limitation test resulted in the highest content of P(3HB-co-3HV) per dry cell weight, 50$%$. Under the nitrogen limited condition, the average molecular weight of P(3HB-co-3HV) obtained was determined to be approximately $2.8\times 10^5$ daltons.

  • PDF

Structure and Characteristics of Biodegradable Polyester from Actinobacillus sp. EL-9 (Actinobacillus sp. EL-9로부터 생산된 생분해성 폴리에스터의 구조 및 특성)

  • Son, Hong-Ju;Lee, Gun;Kim, Geun-Ki;Kim, Han-Soo;Kim, Yong-Kyun;Lee, Sang-Jun
    • Journal of Life Science
    • /
    • v.8 no.5
    • /
    • pp.526-531
    • /
    • 1998
  • In this study, the composition and characteristics of poly-$\beta$-hydroxybutyrate (PHB) biosynthesized by Actinobacillus sp. EL-9 are investigated. PHB produced by Actinobacillus sp. EL-9 was identified as the homopolymer of 3-hydroxy-butyric acid (PHB) by infrared spectroscopy and nuclear magnetic resonance spectroscopy analysis. The melting tem-perature (T$_{m}$), and crystallization temperature(T$_{c}$) of PHB was 169.7$^{\circ}C$ and 69.13$^{\circ}C$, respectively. The viscosity on he basis of Brookfield viscometer was 6.01 ㎗/g. The viscosity-average molecular weight estimated by Mark-Ho-wink-Sakurada equation was 1.08$\times$10$^{6}$ ($\pm$3,000).00).

  • PDF

EPS Production, PHB Accumulation and Abiotic Stress Endurance of Plant Growth Promoting Methylobacterium Strains Grown in a High Carbon Concentration

  • Woo, Sung-Man;Subramanian, Parthiban;Ramasamy, Krishnamoorthy;Joe, M. Melvin;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.572-581
    • /
    • 2012
  • In this study, we compared growth pattern, floc yield, Exo-polysaccharides (EPS) production, Poly-${\beta}$-hydroxybutyrate (PHB) accumulation, resistance to osmotic and acid stress in Methylobacterium strains CBMB20, CBMB27, CBMB35, and CBMB110. Modified high C:N ratio medium denoted as HCN-AMS medium was used with a C:N ratio of 30:1. The HCN-AMS medium favored increased growth in all the studied strains. All Methylobacterium strains tested positive for EPS production and showed positive fluorescence with calcoflour stain. Elevated levels of EPS production from 4.2 to 75.0% was observed in HCN-AMS medium. Accumulation of PHB in HCN-AMS medium increased by 3.8, 36.7, and 12.0% in strains CBMB27, CBMB35, and CBMB110 respectively. Among the abiotic stresses, osmotic stress-induced growth inhibition of Methylobacterium strains was found to be lowered when grown in HCN-AMS medium. Likewise, growth inhibition due to acid stress at pH 5.0 was lower for strains grown in HCN-AMS medium compared to growth in AMS medium. Enhanced survivability under stress conditions may be attributed to the high EPS and PHB production at increased carbon concentration in the growth medium.

Improvement of Photoheterotrophic Hydrogen Production of Rhodobacter sphaeroides by Removal of B800-850 Light-Harvesting Complex

  • KIM EUI-JIN;YOO SANG-BAE;KIM MI-SUN;LEE JEONG K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1115-1119
    • /
    • 2005
  • The photoheterotrophic $H_2$ production of Rhodobacter sphaeroides was significantly increased through disruption of the genes coding for uptake hydrogenase and poly-${\beta}$-hydroxybutyrate (PHB) synthase (Lee et al., Appl. Microbiol. Biotechnol. 60: 147-153, 2002). In this work, we further removed the B800-850 light-harvesting (LH) complex from the strain and found an increase in $H_2$ production at the light-saturating cell growth (${\ge}10$ Watts $[W]/m^2$). Neither the mutant nor the wild-type produced more $H_2$ at the brighter light. Accordingly, light does not appear to be limited for the $H_2$ production by the presence of B800-850. However, increase in the level of the spectral complexes resulted in decrease of $H_2$ production. Thus, although the B875 is essential for light harvesting, the consumption of cellular energy for the synthesis of B800-850 and the surplus LH complexes may reduce the energy flow into the $H_2$ production of R. sphaeroides.