• Title/Summary/Keyword: Poly Ethylene Terephthalate

Search Result 240, Processing Time 0.027 seconds

Interchange Reaction Kinetics and Sequence Distribution of Liquid Crystalline Poly(ethylene terephthalate-co-2(3)-chloro-1,4-phenylene terephthalate)

  • Rhee, Do-Mook;Ha, Wan-Shik;Youk, Ji-Ho;Yoo, Dong-Il
    • Fibers and Polymers
    • /
    • v.2 no.2
    • /
    • pp.86-91
    • /
    • 2001
  • Liquid crystalline (LC) poly(ethylene terephthalate-co-2(3)-chloro-1,4-phenylene terephthalate) [copoly(ET/CPT)] was prepared using poly(ethylene terephthalate) (PET) as a flexible spacer, terephthalic acid (TPA), and chlorohydroquinone diacetate (CHQDA). All reactions involved in the copolymerization were investigated using some model compounds: TAP was used for acidolysis, diphenylethyl terephthalate (DPET) for interchange reaction between PET chains, and 야-o-chlorophenyl terephthalate (DOCT) and di-m-chlorophenyl terephthalate (DMCT) for interchange reaction between PET and rigid rodlike segments. Activation energies obtained for the acidolysis of PET with TPA and for interchange reaction of PET with DPET, DOCT, and DMCT were 19.8 kcal/mol, 26.5 kcal/mole, and 45.9 kcal/mole, respectively. This result supports that the copolymerization proceeds through the acidolysis of PET with TPA first and subsequent polycondensation between carboxyl end group and CHQDA or acetyl end group, which is formed from the reaction of CHQDA and TPA. Also, it was found that ester-interchange reaction can be influenced by the steric hindrance. Copoly(ET/CPT)s obtained has ethylene acetate end groups formed from acetic acid hydroxy ethylene end groups and showed almost the random sequence distribution for all compositions.

  • PDF

Dyeing Properties of 4-Amino-4′-fluorosulfonylazobenzene Disperse Dyes on Poly(ethylene terephthalate)

  • Koh, Joonseok;Cho, Dae Hwan
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.134-138
    • /
    • 2004
  • Dyeing properties of a series of 4-amino-4'-fluorosulfonylazobenzene disperse dyes on poly(ethylene terephthalate) (PET) were investigated. Build-up properties and color properties on PET were examined. In particular, the 4-aminoazobenzene dyes containing a nitro group instead of a fluorosulfonyl group at 4'-position were also synthesized in order to compare their dyeing properties on PET with that of 4'-fluorosulfonyl analogues.

Preparation and characterization of Poly (ethylene terephthalate) (PET) (가지 달린 poly (ethylene terephthalate) (PET)의 제조와 물성에 관한 연구)

  • Kim, Soochan;Park, Sungshin;Sooyun Jung;Kim, Jungsoo;Seungsoon Im
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.203-204
    • /
    • 2003
  • Generally, polymeric foam has many advantages, such as light-weight, good impact absorptivity and adiabatic properties. Poly (ethylene terephthalate) PET has good recyclability and no toxicity. Hence, if we make foam of PET, it could be used for various applications such as heat insulating material, recyclable packing material, and food vessel. Thus these properties are attractive interests to manufacturers. (omitted)

  • PDF

Sorption Equilibria of C. I. Disperse Yellow 54 Dye between Supercritical Carbon Dioxide and PTT and PET Textiles (초임계이산화탄소와 PTT및 PET섬유 사이에서 C. I. Disperse Yellow 54 염료의 수착평형)

  • Ihm, Bang-Hyun;Choi, Jun-Hyuck;Shim, Jae-Jin
    • Clean Technology
    • /
    • v.13 no.3
    • /
    • pp.173-179
    • /
    • 2007
  • In this study the amount of equilibrium sorption of C.I. Disperse Yellow 54 dye in the polymeric textiles such as PTT (poly(trimethylene terephthalate)) and PET (poly(ethylene terephthalate)) textiles was measured in the presence of supercritical carbon dioxide at different temperatures, pressures, and time. The amount of dye sorption increased with temperature and pressure in both PTT and PET textiles, but the increasing rate decreased with pressure. The PTT textile has much larger dye sorption than PET textile. The increasing rate of dye sorption decreased with time at same temperature and pressure for both PTT and PET textiles.

  • PDF

Study on Decomposition Reactions of Poly(ethylene terephthalate) Films Treated with Mono-sodium Ethylene Glycolate (Mono-sodium ethylene glycolate에 의한 Poly(ethylene terephthalate) Film의 분해반응에 관한 연구)

  • Cho, Hwan;Huh, Man-Woo;Cho, In-Sul;Cho, Kyu-Min;Yoon, Hung-Soo
    • Textile Coloration and Finishing
    • /
    • v.2 no.3
    • /
    • pp.26-35
    • /
    • 1990
  • This study was carried out with the view of fundamental investigating to improve the tactile and the hygroscopicity of Poly(ethylene Terephthalate) (PET)fibers. Mono-sodium ethylene glycolate in ethylene glycol (MSEG-EG) solution was prepared and PET films were treated with it. The following conclusions were obtained. When PET films were decomposed in MSEG-EG solution, decomposition rate constant showed an exponential relationship with treating temperature; activition energy was 23.30 Kcal/mol, activation enthalpy was 22.52~22.60 Kcal/mol and activation entropy was -29.20~ -29.41 e.u. On the basis of the results obtained above and structure identification of decomposition products, it was found that the decomposition reaction proceeded through ester interchange reaction.

  • PDF

Transesterification Kinetics of Bis(2-Hydroxyethyl) Terephthalate with 1,4-Butandiol (Bis(2-Hydroxyethyl) Terephthalate와 1,4-Butanediol의 에스테르 교환 반응)

  • Jeon, Hyeongcheol;Han, Myungwan
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.103-111
    • /
    • 2018
  • Transesterification of BHET (Bis (2-Hydroxyethyl) Terephthalate), monomer of PET (Poly Ethylene Terephthalate) to BHBT (Bis (4-Hydroxybutyl Terephthate), monomer of PBT (Poly Butylene Terephthalate), using 1,4-BD (1,4-butanediol) were investigated. Zinc acetate was used as a catalyst for the reaction. Amounts of BHET, EG, and THF (Tetrahydrofuran) in a batch reactor were measured for determining the reaction kinetics. Mathematical models of the batch reactor for the transesterification reaction were developed and used to characterize the reaction kinetics and the composition distribution of the reaction products. Model predictions for the transesterification were in good agreement with experimental results.

Effect of Preheat-Treatment Temperature on Weight Loss of Poly(Ethylene Terephthalate) Fiber by Low-Temperature Oxygen Plasma Treatment (산소 저온 플라즈마 처리한 PET 직물의 열처리 온도가 감량에 미치는 영향)

  • Kang Koo;Tomiji Wakida;Mitsuo Ueda
    • Textile Coloration and Finishing
    • /
    • v.7 no.3
    • /
    • pp.11-14
    • /
    • 1995
  • Effect of low temperature oxygen plasma treatment on the weight loss of poly (ethylene terephthalate) fiber heat-treated at various temperatures was studied using two kinds of plasma apparatus. Investigation was done on the basis of the increased crystallinity up to about 160 $^{\circ}C$, above this temperature weight loss increased significantly with the increased crystallinity in spite of crystallinity increased according to the increased heat-set temperature. The weight loss showed a minimum at about 160 $^{\circ}C$ just like in dyeing of poly(ethylene terephthalate) fiber with disperse dye.

  • PDF

Synthesis and Biodegradation Behavior of Poly(ethylene terephthalate) Oligomers (폴리(에틸렌 테레프탈레이트)(PET) 올리고머의 합성과 생분해 거동)

  • Lee, Chan-Woo;Chung, Jin-Do
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.198-202
    • /
    • 2009
  • Oligo(ethylene terephthalate)(OET), oligo(ethylene succinate-co-terephthalate)(OEST) and oligo(butylene succinate-co-terephthalate)(OBST), which are part of the poly(ethylene terephthalate)(PET) oligomer, were synthesized. Degradation test of oligomers carried out by the presence of lipase PS. There were two objectives in the experiment: first, to measure the weight remaining of the PET oligomer as increasing degradation time, and second to examine the degradation mechanism by analyzing the resulting degraded product. In the synthesis of OEST and OBST, by controlling the feed ratio of both OEST and OBST, we were able to obtain oligomer of different composition ratios. The various composition ratios resulted in oligomer of vastly different thermal properties. We observed that both OEST and OBST were degraded using lipase PS, but as the composition of terephthalic acid was increased, the lipase PS became less effective. We confirmed that the lipase PS easily decomposed polyester of the aliphatic compound.

Structure Development of Uniaxially Drawn Poly(trimethylene terephthalate)/ Poly(ethylene terephthalnte) Blends (일축 연신에 의한 폴리(트리메틸렌 데레프탈레이트)/ 폴리(에틸렌 데레프탈레이트) 블렌드의 구조 변화)

  • 전병환;김환기;강호종
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.67-76
    • /
    • 2004
  • The effects of drawing temperature and draw down ratio on thermal properties, crystallinity and orientation of poly(trimethylene terephthalate)/poly(ethylene terephthalate) (PTT/PET) 100/0 ,90/10, and 80/20 blends have been investigated. The crystallinity and glass transition temperature increased while cold crystallization temperature and cold enthalpy decreased due to the development of orientation and stress induced crystallization by the cord drawing. Introducing PET to PTT decreased the crystallinity of PTT. However, it enhanced the orientation of PTT/PET blends drawn at below the glass transition temperature of PET. This lead to the increase of tensile modulus and tensile strength of PTT/PET blends. The shrinkage increased with increasing orientation, which might be minimized by the development of crystalline morphology of PTT in the course of cold drawing.