• 제목/요약/키워드: Poly(p-phenylenevinylene) (PPV)

검색결과 29건 처리시간 0.026초

Synthesis and Characterization of New Orange-Red Light-Emitting PPV Derivatives With Bulky Cyclohexyl Groups

  • Ko, Seung-Won;Jung, Byung-Jun;Cho, Nam-Sung;Shim, Hong-Ku
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권9호
    • /
    • pp.1235-1267
    • /
    • 2002
  • A series of 2,5-dialkoxy substituted poly(1,4-phenylenevinylene) derivatives containing a rigid and bulky cyclohexyl group in the side chain, poly[2-(7-cyclohexylheptyloxy)-5-butoxy-1,4-phenylenevinylene] (PBCyHpPV), Poly[2-(6-cyclohexylmethoxyhexyloxy)-5-butoxy-1,4-phenylenevinylene] (PBCyHxPV), Poly[2,5-di-(6-cyclohexylmethoxy-hexyloxy)-1,4-phenylenevinylene] (PDCyHxPV) were synthesized via the Gilch polymerization. The synthesized polymers were soluble in common organic solvents and showed good thermal stability up to $370^{\circ}C$. The maximum absorption of PBCyHpPV, PBCyHxPV and PDCyHxPV as thin films was at 513 ㎚, 515 ㎚, 511 ㎚, respectively. Photoluminescence maximum emission of above polymers appeared at 590 ㎚, 597 ㎚, 590 ㎚, respectively. The electroluminescence (EL) maxima of the polymers appeared around 585-590 ㎚, and also showed another shoulder around 630 ㎚ strongly. PDCyHxPV showed the highest EL efficiency and EL power than those of other polymers due to the dilution effect of the two rigid and bulky cyclohexyl groups.

EL Properties of PFV and PPV Copolymers

  • Hwang, Do-Hoon;Lee, Jong-Don;Kang, Jong-Min;Lee, Chang-Hee;Jin, Sung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.877-880
    • /
    • 2003
  • A new class of light-emitting poly(p-phenylenevinylene) (PPV) derivatives. poly(9,9-di-n-octyfluorenyl- 2,7-vinylene) (PFV) and its PPV copolymers, poly[(9,9-di-n-octylfluorenyl-2,7-vinylene)-co-(1,4-phenylenevinylene)]s [Poly(FV-co-PV)s] was synthesized through Gilch polymerization, and their light-emitting properties were investigated. The copolymers showed almost the same UV absorption and PL emission as the PFV homopolymer, regardless of copolymer composition. Interestingly, the EL spectra of these devices were similar to the PL spectra of the corresponding polymer film. However, the EL devices constructed from the poly(FV-co-PV)s showed 10 times higher efficiency than the devices constructed from the PFV homopolymer. This higher efficiency is possibly a result of better charge carrier balance in the copolymer systems due to the lower HOMO level (${\sim}5.5$ eV) of the poly(FV-co-PV)s in comparison to the PFV (${\sim}5.7$ eV).

  • PDF

Synthesis and Characteristics of New Poly(p-phenylenevinylene) with Bulky t-Octylphenoxy Group

  • Kim, Yun-Hi;Lee, Hyun-Ouk;Jung, Sung-Ouk;Kwon, Soon-Ki
    • Macromolecular Research
    • /
    • 제11권3호
    • /
    • pp.194-197
    • /
    • 2003
  • A new 2,5-di(t-octylphenoxy) group substituted poly(p-phenylenevinylene) derivative was synthesized by Gilch polymerization. The obtained polymer was characterized by NMR, FT-IR, and chemical analysis and completely soluble in common organic solvents. The polymer showed good thermal stability with T$_{g}$ of 105$^{\circ}C$. The polymer dissolved in chloroform showed maximum emission at 514 nm with a shoulder peak at around 560 nm. The EL spectrum of the ITO/PEDOT/TOP-PPV/Al device was observed maximum emission at 545 nm with a shoulder peak at around 585 nm.m.

Chemical Vapor Deposition Polymerization of Poly(arylenevinylene)s and Applications to Nanoscience

  • Joo, Sung-Hoon;Lee, Chun-Young;Kim, Kyung-kon;Lee, Ki-Ryong;Jin, Jung-Il
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권2호
    • /
    • pp.169-184
    • /
    • 2006
  • A review is made on the chemical vapor deposition polymerization (CVDP) of insoluble and infusible poly(arylenevinylene)s and its applications to nanoscience. Poly(p-phenylenevinylene) (PPV), poly(naphthylenevinylene)s, poly(2,5-thinenylenevinylene) (PTV), and other homologous polymers containing oligothiophenes could be prepared by the CVDP method in the form of films, tubes, and fibers of nano dimensions. They would be readily converted to graphitic carbons of different structures by thermal treatment. Field emission FE) of carbonized PPV nanotubes, photoconductivity of carbonized PPV/PPV bilayer nanotubes and nanofilms also were studied.

Synthesis and Luminescent Properties of Blue Light Emitting Polymers Containing a 4,4' or 3,3'-Linked Biphenyl Unit

  • Ahn, Taek
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권6호
    • /
    • pp.317-321
    • /
    • 2012
  • Poly[4,4'(3,3')-biphenylenevinylene-alt-2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene], 4,4'(3,3')-PBPMEH-PPV, and poly[4,4'(3,3')-biphenylenevinylene-alt-N-ethylhexyl-3,6-carbazolevinylene], 4,4'(3,3')-PBPCAR-PPV, of varying effective conjugation lengths, were synthesized by the well-known Wittig condensation polymerization between the appropriate biphenyl diphosphonium salts and dialdehyde monomers such as carbazole or dialkoxyphenyl dialdehyde. The conjugation lengths of the polymers were controlled by biphenyl linkages (4,4' or 3,3'). The resulting polymers were highly soluble in common organic solvents and exhibited good thermal stability up to $300^{\circ}C$. The synthesized polymers showed UV-visible absorbance and photoluminescence (PL) in the ranges of 314-400 nm and 430-507 nm, respectively. Carbazole and 3,3'-biphenyl containing 3,3'-PBPCAR-PPV showed a blue PL peak at 430 nm. A single-layer light-emitting diode was fabricated in a configuration of ITO/polymer/Al. Electroluminescence (EL) emission of 3,3'-PBPCAR-PPV was shown at 455 nm.

Synthesis and Characterization of Fluorescent Poly(aryl ether thiadiazole)s and Poly(aryl ether oxadiazole)s

  • Gyesang Yoo;Hong, Sung-Il;Hwang, Seung-Sang;Lee, Jaehwan
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 1998년도 가을 학술발표회논문집
    • /
    • pp.25-28
    • /
    • 1998
  • Since the first report on poly(p-phenylenevinylene), the electroluminescent properties of namy conjugated polymers such as poly(p-phenylenevinylene) (PPV), poythiophene (PT), poly(p-phenylene) (PPP), and polyfluorene (PF) have been investigated because of their potential for use in display technology However, in the application of polymer light-emitting diodes (PLEDs), there are yet three fundamental issues to be considered: (1) full color capability, (2) emission efficiency, (3) stability (lifetime). (omitted)

  • PDF

Syntheses and light-emitting properties of new PPV derivatives containing polyhedral oligomeric silsequioxane

  • Kang, Jong-Min;Lee, Jong-Hee;Jo, Hoon-Hae;Shim, Hong-Ku;Hwang, Do-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1421-1423
    • /
    • 2005
  • A new light-emitting poly(p-phenylenevinylene) (PPV) derivative containing a polyhedral oligomeric silsequioxane (POSS-PPV) and its MEH-PPV copolymers, [Poly(POSSPV-co-MEHPV)]s, have been synthesized through the Gilch polymerization, and their light-emitting properties were investigated. The synthesized polymers were characterized by NMR, GPC, thermogravimetric and elemental analysis. The POSS-PPV and copolymers showed almost the same optical properties as the MEH-PPV, regardless of copolymer composition. The POSS-PPV and MEHPPV all showed their peak absorption at 505 and 496nm, and PL emission maxima at 578 and 581nm. POSSPPV showed higher PL quantum efficiency than the MEH-PPV. Synthesis, characterization and electroluminescent properties of the polymers will be presented.

  • PDF

Systematic Approaches for Blue Light-emitting Polymers by Introducing Various Naphthalene Linkages into Carbazole Containing PPV Derivatives

  • Ahn, Taek
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권5호
    • /
    • pp.258-262
    • /
    • 2013
  • Poly(2,3-naphthalenevinylene-alt-N-ethylhexyl-3,6-carbazolevinylene), 2,3-PNCPV, poly(2,6-naphthalene vinylenealt- N-ethylhexyl-3,6-carbazolevinylene), 2,6-PNCPV, and poly(1,4-naphthalenevinylene-alt-N-ethylhexyl-3,6- carbazolevinylene), 1,4-PNCPV were synthesized through the Wittig polycondensation reaction. The conjugation lengths of the polymers were controlled by differently linked naphthalenes in the polymer main chain. The resulting polymers were completely soluble in common organic solvents, and exhibited good thermal stability at up to $400^{\circ}C$. The synthesized polymers showed UV-visible absorbance and photoluminescence (PL) in the ranges of 357-374 nm and 487-538 nm, respectively. The carbazole and 2,3-linked naphthalene containing 2,3-PNCPV showed a blue PL peak at 487 nm. A single-layer light-emitting diode was fabricated with an ITO/polymer/Al configuration. The electroluminescence (EL) emission of 2,3-PNCPV was shown at 483 nm.