• 제목/요약/키워드: Poly(p-phenylenevinylene) (PPV)

검색결과 29건 처리시간 0.021초

Synthesis and Luminescent Properties of Tetrafluorophenyl Containing Poly(p-phenylenevinylene) Derivatives

  • Ahn, Taek
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권3호
    • /
    • pp.162-167
    • /
    • 2015
  • To investigate the effect of fluoro groups substitution on poly(p-phenylenevinylene) derivatives, poly(2,3,5,6- tetrafluoro-p-phenylenevinylene-alt-N-ethylhexyl-3,6-carbazolevinylene), PCTF-PPV, and poly[2,3,5,6-tetrafluoro-p-phenylenevinylene-alt-2-methoxy-5-(2-ethylhexyloxy)-p-phenylenevinylene], PMTF-PPV, were synthesized by the well-known Wittig condensation polymerization process. To compare the influences of fluoro groups, no fluoro groups containing model polymers, poly(p-phenylenevinylene-alt-N-ethylhexyl-3,6-carbazolevinylene), PCPPPV and poly[p-phenylenevinylene-alt-2-methoxy-5-(2-ethylhexyloxy)-p-phenylenevinylene], p-PMEH-PPV, were also synthesized. The resulting polymers were completely soluble in common organic solvents and exhibited good thermal stability up to 300℃. The polymers showed UV-visible absorbance and photoluminescence (PL) in the ranges of 259~452 nm and 500~580 nm, respectively. The tetrafluorophenyl containing PCTF-PPV and PMTF-PPV showed relatively red-shifted PL peaks at 521 nm and 580 nm, respectively, compared to that of non-fluoro groups containing polymers (PCP-PPV: 500 nm and p-PMEH-PPV: 539 nm). The single-layer light-emitting diode was fabricated in a configuration of ITO/polymer/Al. Electroluminescene (EL) emissions of PCP-PPV, PCTF-PPV, p-PMEH-PPV and PMTF-PPV were shown at 507, 524, 556, and 616 nm, respectively.

Novel Poly(p-phenylenevinylene)s Derivatives with CF3-Phenyl Substituent for Light-Emitting Diodes

  • Jin, Young-Eup;Kim, Jin-Woo;Park, Sung-Heum;Lee, Kwang-Hee;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권5호
    • /
    • pp.795-801
    • /
    • 2005
  • New PPV derivatives which contain electron-withdrawing trifluoromethyl ($CF_3$) group, poly[2-(2-ethylhexyloxy)-5-(4-trifluoro methylphenyl)-1,4-phenylenevinylene] (EH$CF_3$P-PPV), and poly[2-(2-ethylhexyloxy)-5-(3,5-bis(trifluoromethyl)-phenyl)-1,4-phenylenevinylene] (EHB$CF_3$P-PPV), have been synthesized by GILCH polymerization. As the result of the introduction of the electron-withdrawing $CF_3$ group to the phenyl substituent, the LUMO and HOMO energy levels of EH$CF_3$P-PPV (2.8, 5.1 eV) and EHB$CF_3$P-PPV (3.0, 5.3 eV) were lower than those of known poly[2-(2-ethylhexyloxy)-5-phenyl-1,4-phenylenevinylene] (EHP-PPV) (2.6, 4.9 eV). These polymers have been used as the electroluminescent (EL) layers in double layer lightemitting diodes (LEDs) (ITO/PEDOT/polymer/Al). EH$CF_3$P-PPV, and EHB$CF_3$P-PPV show maximum photoluminescence (PL) peaks at ${\lambda}_{max}$ = 550, 539 nm, and maximum EL peak at ${\lambda}_{max}$ = 545, 540 nm, respectively. The current-voltage-luminance (I-V-L) characteristics of the polymers show that turn-on voltages of EH$CF_3$P-PPV and EHB$CF_3$P-PPV are around 4.0 and 3.5 V, respectively.

열경화가 가능한 poly(p-phenylenevinylene)계 정공전달 물질의 합성 및 특성 (Synthesis and Characterization of Thermally Cross-linkable Hole Transporting Material Based on Poly(p-phenylenevinylene) Derivative)

  • 최지영;이봉;김주현
    • 공업화학
    • /
    • 제19권3호
    • /
    • pp.299-303
    • /
    • 2008
  • 열경화가 가능한 PPV유도체인 poly[(2,5-dimethoxy-1,4-phenylenevinylene)-alt-(1,4-phenylenevinylene)] (Cross-PPV)를 Heck coupling 반응을 이용하여 합성하였다. Cross-PPV 박막은 $200^{\circ}C$에서 경화 시키면 일반적인 유기용매에 용해되지 않는 불용성의 고분자 박막이 된다. 열경화 전 후의 Cross-PPV의 구조는 FT-IR로 확인하였으며 구조의 차이는 크지 않았다. 경화된 Cross-PPV는 일반적인 유기용매에 대하여 내용매성이 강하다. 순환전압전류법과 흡수분광법으로 측정한 경화된 Cross-PPV의 호모 및 루모 에너지 준위는 각각 -5.11 eV와 -2.56 eV으로 ITO로 부터의 정공주입장벽(hole injection barrier)이 작아(약 0.1 eV) 정공주입층으로 효과적으로 사용 할 수 있다. 호모 및 루모 에너지 준위가 각각 -5.44 eV, -3.48 eV인 poly(1,4-phenylenevinylene-(4-dicyanomethylene-4H-pyran)-2,6-vinylene-1,4-phenylene-vinylene-2,5-bis(dodecyloxy)-1,4-phenylenevinylene) (PM-PPV)을 발광층으로 사용하여 두층의 구조(bilayer structure)를 갖는 소자(ITO/crosslinked Cross-PPV/PM-PPV/Al)를 제작, 특성을 평가한 결과 최대 효율은 0.024 cd/A, 최대 발광세기는 $45cd/m^2$으로 단층형 소자(ITO/PM-PPV/Al)(최대 효율 = 0.003 cd/A, 최대 발광세기 = $3cd/m^2$)에 비하여 매우 월등한 성능을 나타냄을 확인하였다. 또한 두층의 구조를 가지는 다층형 소자의 발광스펙트럼은 단층형 소자의 발광 스펙트럼과 동일하다. 이러한 사실들로 보아 ITO 및 Al에서 주입된 전자는 모두 발광층인 PM-PPV층에서 재결합(recombination)되어 여기자(exciton)가 형성되는 것으로 사료된다.

Poly(p-phenylenevinylene) (PPV) LB 막의 제작 및 특성 연구 (Study on preparation and characterization of PPV LB films.)

  • 김재환;김경수;강우형;손미화;김영찬;김영관;손병청
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.219-221
    • /
    • 1994
  • Oil-soluble poly(p-phenylene(1-methoxyethylene)), as a precursor of poly(p-phenylenevinylene) (PPV), was synthesized add identified with NMR and FT-IR spectroscopy. The PPV films were prepared by PPV precursor films with a thermal treatment at $250^{\circ}C$ under vacuum, where the PPV precursor films wets formed on various substrates by using Langmuir-Blodgett(LB) method. The characterization of these films was carried out by FT-IR spectroscopy, UV-VIS absorption spectroscopym, and photoluminescence (PL). Atomic Force Microscopy (AFM) has been used to investigate He surface morphology of PPV films.

  • PDF

주파수 의존성에 따른 고분자 LED의 유전 분산 거동에 관한 연구 (AC dielectric response of poly(p-phenylenevinylene) light emitting devices)

  • 이철의;김세헌;장재원;김상우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.149-152
    • /
    • 2000
  • AC impedance measurements on poly-p-phenylenevinylene (PPV) LEDs in the frequency range between 10 Hz and 10$\^$6/ Hz were carried out. The complex-plane impedance spectra indicate that PPV devices can be represented by equivalent circuits that corresponds to the bulk and interfacial regions at high and low frequencies, respectively. As a result of complex impedance analysis through the separation of bulk and interfacial region impedances, increase of forward bias in Al/PPV/ITO devices gave rise to relative decrease of the interfacial region impedance. Above the electric field of 10$\^$6/ V/cm the PPV device showed a space charge limited current (SCLC) conduction. The dependence of the transport mechanism and dielectric properties on the applied bias voltage is discussed.

  • PDF

Synthesis and Light-emitting Properties of Random Copolymers Composed of Phenylsilyl- and Alkoxy-Sustituted Phenylenevinylene

  • Ahn, Taek
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권5호
    • /
    • pp.263-267
    • /
    • 2013
  • New random copolymers of phenylsilyl- and alkoxy-substituted phenylenevinylene, DMPS(9)-MEH(1)-PPV, DMPS(5)- MEH(5)-PPV and DMPS(1)-MEH(9)-PPV, have been synthesized by the Gilch dehydrohalogenation route, and the light-emitting properties of these polymers have been studied. The synthesized polymers were completely soluble in common organic solvents, and exhibited good thermal stability, almost up to $380^{\circ}C$. They showed UV-visible absorbance and photoluminescence (PL) in the ranges of 422-510 and 513-590 nm, respectively, according to their feed ratios. Electroluminescent devices were fabricated with these polymers as emitting layers, and ITO and Al as anode and cathode, respectively. DMPS(1)-MEH(9)-PPV, DMPS(5)-MEH(5)-PPV and DMPS(9)-MEH(1)-PPV exhibited EL emission maxima at 575 nm, 565 nm, and 541 nm, respectively.

PPV를 이용한 유기 박막 EL 소자의 전기-광학적특성 (Electro-optical properties of organic thin film EL device using PPV)

  • 김민수;박이순;박세광
    • 센서학회지
    • /
    • 제7권2호
    • /
    • pp.97-102
    • /
    • 1998
  • PPV(poly(p-phenylenevinylene))를 발광체로 이용한 유기 박막 EL 소자를 다양한 구조와 조건으로 제작하였으며, 그 전기-광학적 특성을 평가하였다. 제작된 EL 소자는 단층구조(ITO(indium tin oxide)PPV/Mg), 이층구조 (ITO/PVK(poly(N-vinylcarbazole))/PPV)Mg와 ITO/PPV/Polymer matrix+PBD/Mg) 그리고 삼층구조 (ITO/PVK/PPV/PS(polystyrene)+PBD(butyl-2-(4-biphenyl)-5-(4-tert-butylphenyl-1,3,4-oxadiazole))/Mg)를 가지며, 그들의 전기광학적 특성을 상호 비교하였다. 이층구조(ITO/PPV)Polymer matrix+PBD/Mg)에서는 PMMA (poly(methyl methacrylate)), PC(polycarbonate) PS 와 MCH(side chain liquid crystalline homopolymer)를 고분자 메트릭스로 사용하였으며, 특히, PS 고분자 메트 릭스를 전자수송층으로 사용하는 경우에 전자수송제인 PBD의 농도에 따른 발광휘도 특성을 구하였다. 제작된 소자의 인가전압에 따른 전류, 휘도특성을 분석한 결과 터널링효과를 나타내었고 안정된 발광특성을 가진다는 것을 알 수 있었다.

  • PDF

Yellow Light-Emitting Poly(p-phenylenevinylene) Derivative with Balanced Charge Injection Property

  • Kim, Joo-Hyun;Lee, Hoo-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권5호
    • /
    • pp.652-656
    • /
    • 2004
  • A new luminescent polymer, poly{1,4-phenylene-1,2-ethenediyl-2'-[2"-(4'"-octyloxyphenyl)-(5"-yl)-1",3",4"-oxadiazole]-1,4-phenylene-1,2-ethenediyl-2,5-bis-dodecyloxy-1,4-phenylene-1,2-ethenediyl} (Oxd-PPV), was synthesized by the Heck coupling reaction. Electron withdrawing pendant, conjugated 1,3,4-oxadiazole (Oxd), is on the vinylene unit. The band gap of the polymer figured out from the UV-visible spectrum was 2.23 eV and the polymer film shows bright yellow emission maximum at 552 nm. The electroluminescence (EL) maximum of double layer structured device (ITO/PEDOT:PSS/Oxd-PPV/Al) appeared at 553 nm. Relative PL quantum yield of Oxd-PPV film is 3.6 times higher than that of MEH-PPV film. The HOMO and LUMO energy levels of Oxd-PPV figured out from the cyclic voltammogram and the UV-visible spectrum are -5.32 and -3.09 eV, respectively, so that more balanced hole and electron injection efficiency can be expected compared to MEH-PPV. A double layer EL of Oxd-PPV has an maximum efficiency of 0.15 cd/A and maximum brightness of 464 cd/$m^2$.

Poly(p-phenylenevinylene)s Derivatives Containing a New Electron-Withdrawing CF3F4Phenyl Group for LEDs

  • Jin, Young-Eup;Kang, Jeung-Hee;Song, Su-Hee;Park, Sung-Heum;Moon, Ji-Hyun;Woo, Han-Young;Lee, Kwang-Hee;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권1호
    • /
    • pp.139-147
    • /
    • 2008
  • New PPV derivatives which contain electron-withdrawing CF3F4phenyl group, poly[2-(2-ethylhexyloxy)-5-(2,3,5,6-tetrafluoro-4-trifluoromethylphenyl)-1,4-phenylenevinylene] (CF3F4P-PPV), and poly[2-(4-(2-etylhexyloxy)-phenyl)-5-(2,3,5,6-tetrafluoro-4-trifluoromethylphenyl)-1,4-phenylenevinylene] (P-CF3F4P-PPV), have been synthesized by GILCH polymerization. As the result of the introduction of the electron-withdrawing CF3F4phenyl group to the phenyl backbone, the LUMO and HOMO energy levels of CF3F4P-PPV (3.14, 5.50 eV) and P-CF3F4P-PPV (3.07, 5.60 eV) were reduced. The PL emission spectra in solid thin film are more red-shifted over 50 nm and increased fwhm (full width at half maximum) than solution conditions by raising aggregation among polymer backbone due to electron withdrawing effect of 2,3,5,6-tetrafluoro-4-trifluoromethylphenyl group. The EL emission maxima of CF3F4P-PPV and P-CF3F4P-PPV appear at around 530-543 nm. The current density-voltage-luminescence (J-V-L) characteristics of ITO/PEDOT/polymer/Al devices of CF3F4P-PPV and P-CF3F4P-PPV show that turn-on voltages are around 12.5 and 7.0 V, and the maximum brightness are about 82 and 598 cd/m2, respectively. The maximum EL efficiency of P-CF3F4P-PPV (0.51 cd/A) was higher than that of CF3F4P-PPV (0.025 cd/A).

Synthesis and Color Tuning of Poly(p-phenylenevinylene) Containing Terphenyl Units for Light Emitting Diodes

  • Jin, Young-Eup;Kim, Jin-Woo;Park, Sung-Heum;Kim, Hee-Joo;Lee, Kwang-Hee;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권11호
    • /
    • pp.1807-1818
    • /
    • 2005
  • New PPV based conjugated polymers, containing terphenyl units, were prepared as the electroluminescent (EL) layer in light-emitting diodes (LEDs). The prepared polymers, poly[2,5-bis(4-(2-etylhexyloxy)phenyl)-1,4-phenylenevinylene] (BEHP-PPV), poly[2-(2-ethylhexyloxy)-5-(4-(4-(2-etylhexyloxy)phenyl)phenyl)-1,4-phenylenevinylene] (EEPP-PPV) and poly[2-(2-ethylhexyloxy)-5-(9,9-bis(2-etylhexyl)fluorenyl)-1,4 phenylenevinylene] (EHF-PPV), were soluble in common organic solvents and used as the EL layer in double layer light-emitting diodes (LEDs) (ITO/PEDOT/polymer/Al). The polymers were prepared by the Gilch reaction. The number-average molecular weight $(M_n)$, weight-average molecular weight $(M_w)$, and the polydispersities (PDI) of these polymers were in the range of 9000-58000, 27000-231000, 2.9-3.9, respectively. These polymers have quite good thermal stability with decomposition starting above 320-350. The polymers show photoluminescence (PL) with maximum peaks at around 526-562 nm (exciting wavelength, 410 nm) and blue EL with maximum peaks at around $\lambda_{max}$ = 526-552 nm. The current-voltageluminance (I-V-L) characteristics of polymers show turn-on voltages of 5 V. Even though both of EEPP-PPV and BEHP-PPV have the same terphenyl group in the repeating unit, EEPP-PPV with directly substituted alkoxy group in the back bone has longer effective conjugation length than BEHP-PPV, and exhibits red shift in the PL spectra. Both of EEPP-PPV and EHF-PPV have ter-phenyl units and directly substituted alkoxy group in back bone. EHF-PPV with fluorenyl unit attached to the PPV backbone has shorter effective conjugation length than EEPP-PPV with biphenyl unit, and exhibits blue shift in the PL spectra.