• Title/Summary/Keyword: Poly(ethylene naphthalate)

Search Result 54, Processing Time 0.019 seconds

Characteristics of PET-PEN Copolymer as a Material for Flexible Substrate (폴리(에틸렌 테레프탈레이트)/폴리(에틸렌 나프탈레이트) 공중합체의 유연기판 특성)

  • Youm, Joo-Sun;Kim, Jea-Hyun;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.599-604
    • /
    • 2011
  • The PET-PEN copolymers have been synthesized and the effect of their morphology on the physical properties of polyester flexible substrate was investigated. It was found that the block sequence of synthesized copolymer was varied depending upon DMT/NDC ratio in polymerization. Higher PET-PEN and PEN block sequence in polyester copolymer resulted in the increase of glass transition temperature and it caused the enhancement of dimensional stability as a polyester flexible substrate. The highest coefficient of thermal expansion(CTE) was obtained when DMT/NDC ratio is 50/50. Synthesized PET-PEN copolymer seems to be acceptable as a flexible substrate since it shows that their optical transmittance at 550 nm is over 80% and thermal weight loss at $280^{\circ}C$ for 1 hr is less than 0.4 wt%.

Fabrication of a Transparent Electrode for a Flexible Organic Solar Cell in Atomic Layer Deposition (ALD 공정을 이용한 플렉시블 유기태양전지용 투명전극 형성)

  • Song, Gen-Soo;Kim, Hyoung-Tae;Yoo, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.121.2-121.2
    • /
    • 2011
  • Aluminum-doped Zinc Oxide (AZO) is considered as an excellent candidate to replace Indium Tin Oxide (ITO), which is widely used as transparent conductive oxide (TCO) for electronic devices such as liquid crystal displays (LCDs), organic light emitting diodes (OLEDs) and organic solar cells (OSCs). In the present study, AZO thin film was applied to the transparent electrode of a channel-shaped flexible organic solar cell using a low-temperature selective-area atomic layer deposition (ALD) process. AZO thin films were deposited on Poly-Ethylene-Naphthalate (PEN) substrates with Di-Ethyl-Zinc (DEZ) and Tri-Methyl-Aluminum (TMA) as precursors and $H_2O$ as an oxidant for the atomic layer deposition at the deposition temperature of $130^{\circ}C$. The pulse time of TMA, DEZ and $H_2O$, and purge time were 0.1 second and 20 second, respectively. The electrical and optical properties of the AZO films were characterized as a function of film thickness. The 300 nm-thick AZO film grown on a PEN substrate exhibited sheet resistance of $87{\Omega}$/square and optical transmittance of 84.3% at a wavelength between 400 and 800 nm.

  • PDF

Properties of $(SiO_2)_x(ZnO)_y$ gas barrier films using facing target sputtering system with low temperature deposition process for flexible displays (플렉서블 디스플레이용 저온공정을 갖는 대향 타겟식 스퍼터링 장치를 이용한 $ZrO_2$ 보호막의 특성)

  • Cho, Do-Hyun;Kim, Ji-Hwan;Lee, Jae-Hwan;Ryu, Sung-Won;Sohn, Sun-Young;Park, Sung-Hwan;Kim, Jong-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.48-49
    • /
    • 2008
  • 본 실험에서는 대향 타겟식 스퍼터링 (face target sputtering, FTS) 장비를 사용하여 플렉서블 디스플레이용 poly ethylene naphthalate (PEN) 플라스틱 기판 위에 보호층으로 사용된 $ZrO_2$ 박막의 특성들에 대해 연구하였다. FTS에 의해 3 시간동안 증착된 $ZrO_2$ 박막의 기판 온도는 $69^{\circ}C$ 로 낮은 증착 온도를 나타내었으며, 이는 유리전이온도가 낮은 PEN 과 같은 플라스틱 기판위에 박막 증착시 적용하기에 적합하다. 제작된 $ZrO_2$ 박막에서 기판 중심으로부터 거리의 함수로 측정된 박막의 두께 차이는 약 4.5%로 매우 균일한 두께를 갖는 것으로 측정되었다.

  • PDF

Study on the Isothermal Crystallization Behaviors of PEN/TLCP Blends

  • Park, Jong-Ryul;Yoon, Doo-Soo;Lee, Eung-Jae;Bang, Moon-Soo;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.51 no.1
    • /
    • pp.56-62
    • /
    • 2016
  • The isothermal crystallization behaviors of blends of poly(ethylene naphthalate) (PEN) and a thermotropic liquid crystalline polymer (TLCP) were investigated by differential scanning calorimetry (DSC) as functions of crystallization temperature and blend composition. Avrami analyses were applied to obtain information on the crystal growth geometry and the factors controlling the rate of crystallization. The crystallization kinetics of the PEN/TLCP blends followed the Avrami equation up to a high degree of crystallization, regardless of crystallization temperature. The calculated Avrami exponents for PEN/TLCP revealed three-dimensional growth of the crystalline region in each blend. The crystallization rate of each blend increased as the crystallization temperature decreased, and decreased as the TLCP content increased. The crystallization of PEN in the blend was affected by the addition of TLCP, which acts as a nucleating agent.