• Title/Summary/Keyword: Poly(ethylene 2,6-naphthalate)

Search Result 35, Processing Time 0.019 seconds

Synthesis and Hydrophilicities of Poly(ethylene 2,6-naphthalate)/ Poly(ethylene glycol) Copolymers

  • Son, Jun-Sik;Ji, Dong-Sun
    • Fibers and Polymers
    • /
    • v.4 no.4
    • /
    • pp.156-160
    • /
    • 2003
  • Poly(ethylene 2,6-naphthalate) (PEN)/Poly(ethylene glycol) (PEG) copolymers were synthesized by two step reaction during the melt copolymerization process. The first step was the esterification reaction of dimethyl-2,6-naphthalenedicarbox-ylate (2,6-NDC) and ethylene glycol (EG). The second step was the condensation polymerization of bishydroxyethylnaphthalate (BHEN) and PEG. The copolymers contained 10 mol% of PEG units with different molecular weights. Structures and thermal properties of the copolymers were studied by using $^1{H-NMR}$, DSC, TGA, etc. Especially, while the intrinsic viscosities of PEN/PEG copolymers increased with increasing molecular weights of PEG, but the glass transition temperature, the cold crystallization temperature, and the weight loss temperature of the copolymers decreased with increasing molecular weights of PEG. Consequently, the hydrophilicities by means of contact angle measurement and moisture content of the copolymer films were found to be significantly improved with increasing molecular weights of PEG.

Rheological anomalies of the poly(ethylene 2, 6-naphthalate) and poly(ethylene terephthalate) blends depending on the compositions

  • Lee, Hyang-Mok;Suh, Duck-Jong;Kil, Seung-Bum;Park, O-Ok;Yoon, Kwan-Han
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.3
    • /
    • pp.219-223
    • /
    • 1999
  • The effects of the transreactions on the rheological properties have been found in the poly(ethylene 2, 6-naphthalate) (PEN) and poly (ethylene terephthalate) (PET) blends. The rheological properties were very much dependent on the blend compositions, which, in turn, were related to extent of the reactions. In particular, a blend with 50/50 wt% composition exhibits an unusual and remarkable decrease in complex viscosity and it may be related to the randomness of the copolymer structure through transreactions. It has been identified by investigating the extent of transreactions and block length of the copolymer from the (ethylene 2, 6-naphthalate) (EN) and (ethylene terephthalate) (ET) units from $^1{H}$ n.m.r. spectra.

  • PDF

Effect of Co-monomer on the Physical Properties of Poly(ethylene naphthalate) Copolymer (단량체의 종류에 따른 폴리(에틸렌 나프탈레이트) 공종합체의 물성 연구)

  • Kim, Jae-Hyun;Heo, Hye-Young;Jung, Tae-Houng;Han, Joon-Hee;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.146-151
    • /
    • 2011
  • The physical properties of poly (ethylene 2,6-naphthalate) (PEN) copolymers were studied. PEN copolymers were synthesized successfully from the mixtures of ethylene glycol(EG), 1,3-propanediol (PD) and l,4-butanediol (BD) with 2,6-dimethyl naphthalene dicarboxylate. The results indicated that PEN copolymers showed an amorphous state when the content of BD(PD) in applied EG/BD(EG/PD) mixtures was less than 40% during the polycondensation. As a result, the lowering of thermal properties, orientation, and mechanical properties was found, however, the dimensional stability was improved. This is a promising result to apply the synthesized PEN copolymers as flexibles substrates.

Cocrystallization Behavior of Poly(m-methylene 2,6-naphthalate-co-1,4-cyclohexanedimethylene 2,6-naphthalate) Random Copolymers (Poly(m-methylene 2,6-naphthalate-co-1,4- cyclohexanedimethylene 2,6-naphthalate) 공중합체의 공결정화 거동)

  • Jeong, Young-Gyu;Jo, Won-Ho;Lee, Sang-Cheol
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.101-104
    • /
    • 2002
  • Since the family of poly(m-methylene 2, 6-naphthalate) (PmN) with the chemical structure as shown in Figure 1(a) was first reported in 1969, the polymers belonging to this family have attracted considerable interests in the commercial and academic points of view due to realization of large-quantity production of 2, 6-naphthalenedicarboxylic acid. The commercially available polymers among this family are poly(ethylene 2, 6-naphthalate) (PEN, m=2) and poly(butylene 2, 6-naphthalate) (PBN, m=4). (omitted)

  • PDF

Micro- and Macroscopic Structures of Oriented Poly(trimethylene 2,6-naphthalate)(PTN) films (배향된 Poly(trimethylene 2,6-naphthalate)(PTN) 필름의 미시적/거시적 구조)

  • 양영일;김영호;이한섭
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.341-342
    • /
    • 2003
  • Poly(trimethylene 2,6-naphthalate)(PTN)은 dimethyl-2,6-naphthalene dicarboxylate(NDC)와 1,3-propanediol(PDO)로 합성된 polyester이다. 비록 PTN은 아직 상업화된 resin은 아니지만 Poly(trimethylene terephthalate)(PTT)와 비슷한 화학적 구조를 가지며 PTT 보다 높은 유리전이 온도(72$^{\circ}C$)를 나타내고 있으므로 다양한 분야에 응용될 수 있다. 특히 최근에 1,3-propanediol based polyester는 가스 차탄 특성이 우수하다는 것이 보고되었으며 PTN의 산소, 이산화탄소 등 가스 차단 특성은 poly(ethylene 2,6-naphthalete)(PEN)보다 우수한 것으로 보고되었다. (중략)

  • PDF

Effect of Uniaxial Drawing Conditions on the Orientation of Poly (ethylene 2,6- naphthalate) (일축 연신 조건에 따른 Poly(ethylene 2,6-naphthalate) 배향에 관한 연구)

  • 진병석;이성효;이광희
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.699-706
    • /
    • 2001
  • The effects of uniaxial drawing conditions on the molecular orientation of poly (ethylene 2,6-naphthalate) (PEN) are investigated. Birefringence measurements show that the orientation is significantly enhanced at high draw ratio, low drawing temperature, and fast drawing speed. The characteristics of orientation examined by FTIR- ATR dichroism method represent almost same results. Amorphous orientation function increases with drawing rate at $120^{\circ}C$, but it decreases with drawing rate at $141^{\circ}C$. These behaviors can be explained with the relation between crystallization and chain relaxation rates. It is observed that the orientation of PEN film is accompanied by significant alignment of the naphthalene rings of PEN parallel to the film surface.

  • PDF

Studies on the Formation of Poly(ethylene 2,6-naphthalate). 1. Polycondensation Catalyzed by Various Metal Compounds

  • 박상순;임승순
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.11
    • /
    • pp.1093-1099
    • /
    • 1995
  • The polycondensations of bis(2-hydroxyethyl) naphthalate were kinetically investigated in the presence of various metallic compounds as catalysts at 295 ℃. The effect of the catalyst nature in the polycondensation has been studied. The order of catalytic activity on the formation of poly(ethylene 2,6-naphthalate) was found to be related to the stability constants which are indicated in an index of the catalytic activity.

On the Composites of poly(ethylene 2,6-naphthalate) with a Thermotropic Block Copolyester(I) (열방성 블록 코폴리에스테르와 poly(ethylene 2,6-naphthalate)의 복합재료 연구(I))

  • Choi, Jae Kon
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.454-462
    • /
    • 1997
  • Thermotropic block copolyester(TLCP-b-PBN) based on poly(tetramethylene 2,6-(naphthaloyldioxy)dibenzoates)(TLCP) and poly(butylene 2,6-naphthalate)(PBN) was synthesized by solution polycondensation and melt-blended with poly(ethylene 2,6-naphthalate)(PEN) for in-situ composites. The TLCP domains showed nematic behavior in melt. The composition of block copolymer was determined from $^1H-NMR$ spectroscopy. The DSC thermogram of block copolymer revealed the presence of two major melting transitions, corresponding to the separete melting of PBN and TLCP domains. The glass transition temperature(Tg) of the PEN in the blends decreased with increasing the content of TLCP-b-PBN and the TLCP-b-PBN acted as a nucleating agent for the matrix polymers. In the 20% TLCP-b-PBN blend, well oriented TLCP fibriles were observed at temperature above the melting point of the PEN by optical microscopy. By scanning electron micrographs of cryogenically fractured surfaces of extruded blends, the TLCp domains were found to be finely and uniformely dispersed in 0.15 to $0.2{\mu}m$ size. Interfacial adhesion between the TLCP and matrix polymer was seemed to be good. Under certain condition TLCP formed a fiver structure in the PEN matrix, with thin oriented TLCP fibril in the skin region and spherical TLCP domains in the core.

  • PDF

Miscibility in Binary Blends of Poly(vinyl phenol) and Poly(n-alkylene 2,6-naphthalates)

  • Lee, Joon-Youl;Han, Ji-Young
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.94-99
    • /
    • 2004
  • We have performed Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) studies on blends of poly(vinyl phenol) (PVPh) with poly(n-alkylene 2,6-naphthalates) containing alkylene units of different lengths. The results indicate that each poly(ethylene 2,6-naphthalate) (PEN) and poly(trimethylene 2,6-naphthalate) (PTN) blend with PVPh is immiscible or partially miscible, but blends of poly(butylene 2,6-naphthalate) (PBN) with PVPh are miscible over the whole range of compositions in the amorphous state. FTIR spectroscopic analysis confirmed that significant degree of intermolecular hydrogen bonding occurs between the PBN ester carbonyl groups and the PVPh hydroxyl groups. The large difference in the degree of mixing in these blend systems is described in terms of the effect that chain mobility has on the accessibility of the ester carbonyl functional groups toward the hydroxyl groups of PVPh, which in turn impacts the miscibility of these blends.

Spherulitic Morphologies of Poly(ethylene terephthalate), Poly(ethylene 2,6-naphthalate), and Their Blend

  • Lee, Jong-Kwan;Lee, Kwang-Hee;Jin, Byung-Suk
    • Macromolecular Research
    • /
    • v.10 no.1
    • /
    • pp.44-48
    • /
    • 2002
  • The supermolecular structures of poly(ethylene terephthalate) (PET), poly(ethylene 2,6-naphthalate) (PEN), and their blend were investigated with optical microscopy and small angle light scattering. With increasing the crystallization temperature, incomplete spherulitic texture was developed for the PET samples. At a high crystallization temperature of 220 $^{\circ}C$, the light scattering pattern represented a random collection of uncorrelated lamellae. The general morphological appearances for the PEN samples were similar to that of the PET. A notable feature was that the spherulites of the PEN formed at 200 $^{\circ}C$ showed regular concentric bands arising from a regular twist in the radiating lamellae. The spherulitic morphology of the PET/PEN blend was largely influenced by the changes of the sequence distribution in polymer chains determined by the level of transesterifcation. The increased sequential irregularity in the polymer chains via transesterification caused a morphological transition from a regular folded crystallite to a tilted lamellar crystallite.