• Title/Summary/Keyword: Poly(butylene succinate)

Search Result 51, Processing Time 0.043 seconds

Fiber Loading Effect on the Interlaminar, Mechanical, and Thermal Properties of Novel Lyocell/Poly(butylene succinate) Biocomposites (새로운 라이오셀/poly(butylene succinate) 바이오복합재료의 층간전단, 기계적, 열적 특성에 미치는 섬유함량의 영향)

  • Lee, Jae Young;Kim, Jin Myung;Cho, Donghwan;Park, Jong Kyoo
    • Journal of Adhesion and Interface
    • /
    • v.10 no.2
    • /
    • pp.106-112
    • /
    • 2009
  • In the present work, novel biocomposites made with biodegradable Lyocell woven fabrics and poly (butylene succinate) were successfully fabricated for the first time. Lyocell/poly(butylene succinate) biocomposites with different fiber loadings of 0, 30, 40, 50 and 60 wt% were prepared by compression molding with a sheet interleaving manner. The effect of Lyocell fabric loading on the interlaminar shear strength, tensile and flexural properties, heat deflection temperature, thermal expansion behavior, and thermal stability of the biocomposites was investigated. The properties strongly depended on the fabric loading and the results were consistent with each other. It was demonstrated that the Lyocell fabrics played a remarkable role in improving the properties of poly(butylene succinate) resin by incorporating the fabrics into the resin. The greatest inter-laminar, tensile, flexural and thermal properties of the biocomposites were obtained with Lyocell fabrics of 50% by weight.

  • PDF

Sequence Distribution and Thermal Properties of Poly(butylene succinate-co-butylene terephthalate) Copolyesters (Poly(butylene succinate-co-butylene terephthalate) 공중합물의 미세구조와 열적 성질)

  • Park, Sang Soon;Jeong, Jae Ho;Kim, Tae Jeong;Kim, Dae Jin;Im, Seung Soon
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.1
    • /
    • pp.87-95
    • /
    • 1996
  • The binary random copolyesters of poly(butylene succinate-co-butylene terephthalate) (PBS/PBT) were synthesized and their sequence distributions were investigated over the entire range for PBS/PBT copolyester compositions by 1H NMR spectroscopy. The melting point (Tm) of these copolyesters were depressed gradually with the increase of dimethyl terephthalate (DMT) mol% in composition and appeared an eutetic behaviour which appears a minimum at ST3 (DMT 65.8 mol%). The melting behaviour of PBS/PBT copolyester was not directly depended on molar fraction (Xa) but on only the sequence propagation probability (P) which occurs in triad fraction. It also can be seen that when the succinate units (or terephthalate units) were abundant enough, PBS/PBT Copolymers formed only PBS (or PBT) crystal with complete rejection of the terephthalate units (or succinate units).

  • PDF

Screening of Microorganisms with High Poly (butylene succinate-co-butylene adipate)-Degrading Activity (고활성 Poly(butylene succinate-co-butylene adipate) 분해균의 선발)

  • Kim, Mal-Nam;Lee, Sun-Hee;Kim, Wan-Gyu;Weon, Hang-Yeon
    • Korean Journal of Environmental Biology
    • /
    • v.25 no.3
    • /
    • pp.267-272
    • /
    • 2007
  • Microorganisms capable of degrading poly(butylene succinate-co-butylene adipate) (PBSA) were isolated from 40 soil samples such as landfill site soil, cultivating soil and activated sludge soil from 20 different sites in Korea by using the enrichment culture and the clear zone test at $37^{\circ}C$. Based on the 16S rDNA sequences, the isolated bacterium was identified to be Streptomyces sp. PBSA-1. Morphological and cultural characteristics were employed for the identification of the isolated fungi and they were proved to be Aspergillus fumigatus PBSA-2 and Aspergillus fumigatus PBSA-3. The PBSA degradation activity of the isolated microorganisms was enhanced through the serial acclimation in PBSA plate medium. The PBSA degrading microorganisms appeared to be highly active for the PBSA degradation in that 83% of PBSA was degraded by Streptomyces sp. PBSA-l, and 65% and 75% of PBSA was mineralized by A. fumigatus PBSA2 and A. fumigatus PBSA-3 respectively during 40 days of the modified Sturm test.

Sequence Distribution and Thermal Property of Poly(butylene glutarate-co-adipate-co-succinate-co-terephthalate) Copolyesters (Poly(butylene glutarate-co-adipate-co-succinate-co-terephthalate) 공중합체의 서열분포 및 열적성질)

  • Park, Sang Soon;Cho, Yoon;Kang, Hye Jung
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.6
    • /
    • pp.682-690
    • /
    • 1999
  • The quaternary random copolyesters of poly (butylene glutarate-co-adipate-co-succinate-co-terephthalate)(PBGAST) were synthesized and charaterized by $^1H-NMR$ spectrometry, DSC method, and X-ray diffractometry. Thus the melting point trends and crystallization behaviors of PBGAST copolyesters were obviously depended on terephthalate content in copolymers as well as reaction condition.

  • PDF

Mechanism of Enzymatic Degradation of Poly(butylene succinate)

  • Lee, Chan-Woo;Kimura, Yoshiharu;Chung, Jin-Do
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.651-658
    • /
    • 2008
  • Poly(butylene succiate) (PBS), poly(butylene succinate-co-L-lactate) (PBSL), and poly(butylene succinate-co-6-hydroxycaproate) (PBSCL) polymers were degraded by lipase $PS^{(R)}$, and the enzymatic degradation mechanism of PBS was analyzed in detail. The enzymatic degradation of PBS gave 4-hydroxybutyl succinate (4HBS) as the main product. An exo-type hydrolysis mechanism was proposed based on this observation. The terminal chain of PBS had conformational similarity to ordinary tri- and diglycerides and could be incorporated as a substrate in the active site of this lipase. The surface adsorption of the lipase was much larger on PBS and its copolymer films than on the other polyester films because the lipase adhered quite strongly to the polymer terminal through a specific adsorption mechanism. Kinetic analysis showed that the total number of surface adsorption points per unit area of PBSL and PBSCL copolymers was larger than that of the PBS homopolymer.

A Study on the Biodegradable Properties of Polyesters associated with their Chemical Structures (폴리에스테르의 화학적 구조에 따른 생분해 거동에 관한 연구)

  • Woo, Je-Wan;Sohn, Myung-Ho;Cha, Hye-Young;Park, Yang-Sung;Chang, Kil Sang;Whang, Young-ae;Park, Sang-Soon
    • Clean Technology
    • /
    • v.8 no.4
    • /
    • pp.223-228
    • /
    • 2002
  • The biodegradable Properties of various polyester resins with different chemical structures have been studied by applying the controlled compost test and soil burial test. Celluose was taken as a fully biodegradable reference resin while PVC and PE were empolyed as non-biodegradable reference chains or ester group were rather easily degraded by hydrolase, meanwhile copolymer type polyesters which contain aromatic rings showed relatively low biodegradability. According to the results from controlled compost test, cellulose(the positive reference) showed 70.6% degradation after 45 days, whereas synthetic poly(butylene adipate-co-succinate), poly(butylene succinate), poly(butylene adipate-co-succinate-co-terephthalate) showed 44.0%, 32.0% and 23.4% degradation respectively. In this regard, it was concluded that biodegradable properties of polymers are largely dependant on the chemical structures constituting the polymers.

  • PDF

Characterization and processing of Biodegradable polymer blends of poly(lactic acid) with poly(butylene succinate adipate)

  • Lee, Sang-Mook;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.2
    • /
    • pp.71-77
    • /
    • 2005
  • We investigated thermal, rheological, morphological and mechanical properties of a binary blend of poly(lactic acid) (PLA) and poly(butylene succinate adipate) (PBSA). The blends were extruded and their molded properties were examined. DSC thermograms of blends indicated that the thermal properties of PLA did not change noticeably with the amount of PBSA, but thermogravimetric analysis showed that thermal stability of the blends was lower than that of pure PLA and PBSA. Immiscibility was checked with thermal data. The rheological properties of the blends changed remarkably with composition. The tensile strength and modulus of blends decreased with PBSA content. Interestingly, however, the impact strength of PLA/PBSA (80/20) blend was seriously increased higher than the rule of mixture. Morphology of the blends showed a typical sea and island structure of immiscible blend. The effect of the blend composition on the biodegradation was also investigated. In the early stage of the degradation test, the highest rate was observed for the blend containing $80wt\%$ PBSA.