• Title/Summary/Keyword: Poly(Vinyl Alcohol)

Search Result 471, Processing Time 0.024 seconds

Gas Permeation Properties of Polymeric Membranes for Biosensor Prepared from Poly(vinyl chloride) Derivatives (Poly(vinyl chloride) 유도체로부터 제조된 바이오센서용 고분자막의 기체 투과특성)

  • Lim, Chun-Won;Kim, Wan-Young;Lee, Youn-Sik;Yoon, Jeong-Won;Jeong, Yong-Seob
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.362-366
    • /
    • 1999
  • Membranes for biosensor were prepared from poly(vinyl chloride) (PVC)l derivatives using the solution casting method, and their gas permeabilities were studied. The polymer membranes dried slowly in air showed higher permeability coefficients than those dried in vacuum. The permeabilily coefficients of carboxylated poly(vinyl chloride) (CPVC) membranes for $O_2$ and $CO_2$ decreased as the pressure of the feed gas increased. The addition of dioctylphthalate (DOP) enhanced the permeation rates for $O_2$ and $CO_2$. For example, the permeability coefficients of CPVC membranes containing 30 wt. % DOP for $O_2$ and $CO_2$ at 100 psig were 2.03 and 0.96 Barrer, respectively, which were about 4~5 times higher than those of the membranes without DOP. Poly(vinyl chloride-co-vinyl acetate-co-vinyl alcohol) (Syn-PVCAcAl) obtained by hydrolysis of poly(vinyl chloride-co-vinyl acetate (PVCA) showed a higher permeability coefficient for $CO_2$ in the presence of DOP than that for commercial PVCAcAl, but did not show any significant difference in permeability for $O_2$.

  • PDF

Preparation and Characterization of Cellulose Nanocrystals Reinforced Poly (vinyl alcohol) Based Hydrogels for Drug Delivery System (약물 전달 시스템 적용을 위한 셀룰로오스 나노크리스탈(CNCs) 강화 Poly(vinyl alcohol) 기반 하이드로겔의 제조 및 특성)

  • CHO, Hyejung;YOO, Won-Jae;AHN, Jinsoo;CHUN, Sang-Jin;LEE, Sun-Young;GWON, Jaegyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.431-449
    • /
    • 2020
  • Structural property of most hydrogels is soft, resulting in low mechanical performance that limits their usage in the biomedical applications. For overcoming the drawback, cellulose nanocrystals (CNCs) were adopted in this study. Effects of CNCs on characteristics and drug delivery performance of poly (vinyl alcohol) based hydrogels were explored. FT-IR results showed that the fabricated hydrogels had semi-IPN (semi-interpenetrating polymer network) by formation of acetal and aldehyde bridge. Water absorption and swelling ratio decreased with increasing CNCs content, and the hydrogels with CNCs showed better viscoelastic performance than the without CNCs. Also, CNCs mostly improved the ability of the hydrogel to absorb the drug and the sustainability of the drug release. These results demonstrated that incorporating CNCs into the hydrogel systems can be a good alternative to improve drug delivery performance and mechanical property of the hydrogels.

Solid Electrolyte Composed of Poly(vinyl alcohol) and Oligo(3,4-ethylenedioxythiophene) Having a Crosslinked Structure (가교 구조를 갖는 poly(vinyl alcohol)과 oligo(3,4-ethylenedioxy-thiophene)으로 이루어진 고체 전해질)

  • Gyo Jun Song;Min Su Kim;Nam-Ju Jo
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.303-308
    • /
    • 2024
  • Currently, lithium secondary batteries have been used as medium- or large-sized energy sources such as electric vehicles and energy storage system (ESS) due to their high energy and eco-friendly characteristics. Currently commercialized lithium secondary batteries do not fully meet the demands for high energy density and safety. Many studies on solid electrolytes are being conducted to satisfy these requirements. In order to commercialize a solid electrolyte, it is important to supplement the low ion conductivity and high interface resistance with an electrode compared to the organic liquid electrolyte. Therefore, in this study, oligo(3,4-ethylenedioxythiophene (EDOT)) is added to poly(vinyl alcohol) (PVA), which is a polymer matrix with ion conductivity and sticky characteristics, to decrease the interfacial resistance with the same type of polythiophene (PTh)-based electrode. In addition, the addition of porous silicon dioxide (SiO2) filler improves lithium salt dissociation ability and increases ionic conductivity. And the electrochemical stability of the solid electrolyte, which has been lowered due to additives, is improved by introducing a cross-linked structure using boric acid (BA).

Preparation and Characterization of Proton Conducting Membranes by Blending PVC-g-PHEA and PVA

  • Koh, Jong-Kwan;Choi, Jin-Kyu;Seo, Jin-Ah;Zeng, Xiaolei;Kim, Jong-Hak
    • Korean Membrane Journal
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • This work reports the preparation of proton conductive crosslinked polymer electrolyte membranes by blending poly(vinyl chloride)-g-poly(hydroxyl ethyl acrylate) (PVC-g-PHEA) and poly(vinyl alcohol) (PVA). The PHEA chains of the graft copolymer were crosslinked with PVA using sulfosuccinic acid (SA) via the esterification reaction between -OH of polymer matrix and -COOH of SA. The PVC-g-PHEA graft copolymer was synthesized via atom transfer radical polymerization (ATRP) using direct initiation of the secondary chlorines of PVC backbones. Ion exchange capacity (IEC) continuously increased with increasing concentrations of SA, due to the increasing portion of charged groups in the membrane. However, the water uptake increased up to 20.0 wt% of SA concentration above which it decreased monotonically. The membrane exhibited a maximum proton conductivity of 0.026 S/cm at 20.0 wt% of SA concentration, which is presumably due to competitive effect between the increase of ionic sites and the crosslinking reaction.

Emulsion Polymerization of Vinyl acetate-Butyl acrylate Copolymer (유화 중합에 의한 비닐 아세테이트-부틸 아크릴레이트 공중합체의 합성 연구)

  • 설수덕;임종민
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.135-142
    • /
    • 2004
  • Poly(vinyl acetate) (PVAc) prepared by emulsion polymerization has broad applications for additives such as paint binder, adhesive for wood and paper due to its low glass transition temperature which help to plasticize substrate resins. Since emulsion polymerization has a disadvantage that surfactant and ionic initiator degrade properties of the product polymer, poly(vinyl acetate-co-butyl acrylate) (VVc-BA) was synthesized using potassium persulfate as catalyst and poly(vinyl alcohol) (PVA) as protective colloid to prevent the degradation. The copolymer latex product was internally plasticized and has enhanced colloid stability, adhesion, tensile strength and elongation. During VAc-BA emulsion polymerization, no coagulation and complete conversion occur with the reactant mixture of 0.7wt% potassium persulfate, 15wt% poly(vinyl alcohol) (PVA-217), and the balanced monomer that the weight ratio of vinyl acetate to butyl acrylate is 19. As the concentrations of PVA increase, the copolymerization becomes faster and polymer particles are more stable, resulting in enhanced mechanical stability of the VAc-BA copolymer. However, the size of the polymer particles decreases with increasing PVA contents. Properties of the VAc-BA copolymer, such as minimum film formation temperature, glass transition temperature, surface morphology, molecular weight and molecular weight distribution, tensile strength and elongation, were characterized using differential scanning calorimeter, transmission electron microscope and other instruments.

Permeation Characteristics of Water Vapor Through PVA/PSSA_MA/THS-PSA Membranes (PVA/PSSA-MA/THS-PSA 막의 수증기 투과특성에 관한 연구)

  • Rhim, Ji-Won;Cho, Hyun-Il;Kim, Dae-Hoon;Ha, Seong-Yong;Nam, Sang-Yong
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.140-145
    • /
    • 2007
  • In this study, 3-(trihydroxysilyl)-1-propanesulfonic acid (THS-PSA) was added to poly(vinyl alcohol) (PVA) membranes crosslinked with poly(styrene sulfonic acid-co-maleic acid) (PSSA_MA) to improve the separation characteristics toward water vapors in the air. The prepared membranes varying both PSSA_MA and THS-PSA amounts were also synthesized at different cross linking temperatures. Then, in order to investigate the separation characteristics of the resulting membranes, the dynamic vapor sorption (DVS) and vapor permeation experiments were carried out. The increase of cross-linking temperature showed longer time to reach the equilibrium sorption state from the dynamic vapor sorption experiments. PVA/PSSA_MA (3%)/THA-PSA(7%) prepared at $120^{\circ}C$ gave the highest permeability of 480 barrer at $35^{\circ}C$.

Pervaporation Separation of Water-Ethanol Mixture Using Crosslinked PVA/PSSA_MA/TEOS Hybrid Membranes (PVA/PSSA_MA/TEOS 막을 이용한 물/에탄올 계의 투과증발 분리)

  • Rhim, Ji-Won;Lee, Byung-Seong;Kim, Dae-Hoon;Yoon, Seok-Won;Im, Hyeon-Soo;Moon, Go-Young;Nam, Sang-Yong
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.44-52
    • /
    • 2008
  • Pervaporation separation for water-ethanol mixtures has been carried out using crosslinked poly(vinyl alcohol) (PVA) membranes with poly(styrene sulfonic acid-co-maleic acid) (PSSA_MA) and at which tetraethylorthosilicate (TEOS) was introduced. The concentration of PSSA_MA was fixed 7 wt% over PVA and the TEOS contents, 3, 5, and 7 wt%, were varied against PVA. The composition of the feed mixtures were 10, 20, 30 and 50 wt% of water in it. PVA/PSSA_MA/5 wt% TEOS membrane showed the separation factor, 1730 and the permeability, $16.3g/m^2{\cdot}hr$ for water : ethanol = 10 : 90 at $50^{\circ}C$.

Pervaporation Separation of Water/Ethanol Mixture Using PVA/PSSA-MA Ion Exchange Membranes (PVA/PSSA-MA 이온교환막을 이용한 물/에탄올 계의 투과증발분리)

  • Rhim Ji-Won;Cho Hyun-Il;Seo Moo-Young;Kim Dae-Hoon;Park In-Cheul;Nam Sang-Yong
    • Membrane Journal
    • /
    • v.16 no.3
    • /
    • pp.235-239
    • /
    • 2006
  • This study illustrated the results of pervaporation separation using crosslinked poly(vinyl alcohol) (PVA) with poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA) for water-ethanol system at 25, 35, and $45^{\circ}C$. The contents of the crosslinking agents were 7, 9, and ll wt% against PVA and the feed compositions of 50, 20, 10 and 4.4% in water were investigated. Typical trends of permeability and separation factor in pervaporation were observed for both the crosslinking agents and operating temperatures. For water : ethanol = 10 : 90, and at $45^{\circ}C$, PSSA-MA 11 wt% membrane showed the permeability $58.92g/m^2{\cdot}hr$ and the separation factor 12003 respectively.

Pervaporation of Water/ethanol Mixtures Using PVA Membranes Crosslinked with Poly (styrene-maleic anhydride): Study on the Separation Behavior (Poly (styrene-maleic anhydride)로 가교된 Poly (vinyl alcohol)막을 이용한 물/에탄올 수용액의 투과증발: 분리거동에 관한 연구)

  • Kim, Sang-Gyun;Lim, Gyun-Taek;Park, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.469-474
    • /
    • 1998
  • Poly (vinyl alcohol) (PVA) membranes crosslinked with poly (styrene-co-maleic anhydride) (PSMAn) have been prepared by the solution method. To investigate the separation behavior of the crosslinked PVA/PSMAn membranes in the pervaporation process, the selective sorption experiment and swelling measurements of the membranes in ethanol-water mixtures of 30~90 wt % ethanol contents were conducted with equipment that was able to measure the concentration and amount of the liquid absorbed in the membranes. The membranes prepared in this study exhibited good selectivity toward water component in sorption and permeation. Also, in the feed containing ethanol more than 50 wt %, the permeation selectivity of the membrane showed better correlation with the sorption selectivity than that with the swelling ratio changing toward the crosslinking content. This behavior was consistence with a solution-diffusion model correlating permeation and sorption selectivity, and led to the conclusion that the permeation selectivity was determined by sorption step rather than by diffusion step in the membrane.

  • PDF