• Title/Summary/Keyword: Pollution sources

Search Result 1,051, Processing Time 0.026 seconds

Recent Progress in Air Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2007 (설비공학 분야의 최근 연구 동향 : 2007년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Shin, Dong-Sin;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.844-861
    • /
    • 2008
  • The papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during the year of 2007 have been reviewed. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro nano fluid, micropump and fuel cell. Traditional CFD was still popular and widely used in research and development. Studies about fans and pumps were performed in the field of fluid machinery. Characteristics of flow and fin shape optimization are studied in the field of piping system. (2) The research works on heat transfer have been reviewed in the field of heat transfer characteristics, heat exchangers, and desiccant cooling systems. The research on heat transfer characteristics includes thermal transport in pulse tubes, high temperature superconductors, ground heat exchangers, fuel cell stacks and ice slurry systems. For the heat 'exchangers, the research on pin-tube heat exchanger, plate heat exchanger, condensers and gas coolers has been cordially implemented. The research works on heat transfer augmenting tubes have been also reported. For the desiccant cooling systems, the studies on the design and operating conditions for desiccant rotors as well as performance index are noticeable. (3) In the field of refrigeration, many papers were presented on the air conditioning system using CO2 as a refrigerant. The issues on the two-stage compression, the oil selection, and the appropriate oil charge were treated. The subjects of alternative refrigerants were also studied steadily. Hydrocarbons, DME and their mixtures were considered and various heat transfer correlations were proposed. (4) Research papers have been reviewed in the field of building facilities by grouping into the researches on heat and cold sources, air conditioning and air cleaning, ventilation and fire research including tunnel ventilation, flow control of piping system, and sound research with drain system. Main focuses have been addressed to the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies were mostly focused on analyzing the indoor environment in various spaces like cars, old tombs, machine rooms, and etc. in an architectural environmental field. Moreover, subjects of various fields such as the evaluation of noise, thermal environment, indoor air quality and development of energy analysis program were researched by various methods of survey, simulation, and field experiment.

Spent SCR Catalyst Leach Liquor Processed for Valuable Metals Extraction by Solvent Extraction Technique (SCR 폐촉매 침출액으로부터 용매추출법에 의한 유가금속의 추출)

  • Sola, Ana Belen Cueva;Jeon, Jong-Hyuk;Lee, Jin-Young;Parhi, Pankaj Kumar;Jyothi, Rajesh Kumar
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.55-61
    • /
    • 2020
  • Selective catalytic reduction (SCR) has been a promising technology to reduce the air pollution caused by nitrogen oxides (NOx) in several industries. The consumption of SCR catalysts increases every year as technology evolves, however those have a limited lifespan and usually end up in landfills after they deactivate. Currently, the most widely used catalyst for and stationary applications is V2O5-WO3/TiO2 which can contain around 50% wt V2O5 and 7-10% wt of WO3. The vast uses for both vanadium and tungsten and the worldwide interest in recycling methods that allow for the extraction of metals from secondary sources represent the major motivation for this research. The extraction time, pH dependency, extraction concentration studies were carried out using Aliquat 336 in exxol D80 as the extractant. It was determined that to optimize the extraction of both metals 30min of contact time with an organic phase containing 0.5mol/L of Aliquat 336 are needed at a slightly acidic pH (~5.0). In addition, counter McCabe-Thiele studies allowed us to determine that one stage is necessary for the removal of 99% of vanadium while 2 stages are necessary for the extraction of tungsten and counter current simulations proved that the theoretical approach was correct.

Effects of Artificial Acid Precipitation on Forest Soil Buffer Capacities (인공산성우(人工酸性雨)가 삼림토양(森林土壤)의 완충능(緩衝能)에 미치는 영향(影響))

  • Min, Ell Sik;Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.4
    • /
    • pp.376-387
    • /
    • 1990
  • A research effort has been made to determine soil buffer capacity in forest soils nearby urban and industrialized regions. Buffer capacities of soils from four regions were measured by different pH levels of artificial acid precipitation. The following conclusions have been drawn in response to the overall research objectives. Soil Suffer capacity was the highest in Kangwondo followed by Uisan, Yeochon and Seoul when simulated acid precipitation were treated at the level of pH 3.0-5.7. With the acid precipitation treatment below pH 2.0 level, however, the capacity dropped seriously with no significant differences between the regions. In Kangwondo region soils weathered from granite and limestone showed significant differences in the buffer capacities. Soil collected in Seoul and Ulsean revealed that the capacities tended to increase with the distance from the pollution sources when treated at pH 3.0, 4.5 and 5.7 level of acid precipitation. The major mechanism of soil buffer observed during simulated acid precipitation experiment was canon exchange for Kangwondo forest soils. In Seoul region canon exchange also played an important role in soil buffering under artificial acid precipitation between 3.0 and 5.7 pH levels, yet under pH 2.0 level aluminum and silicate hydrolysis. In Ulsan canon exchange was a msjor determinant for the buffer capacity above pH 4.5 level, between pH 3.0-4.5 aluminum hydrolysis and below pH 3.0 aluminum and silicate hydrolysis. In Yeochon silicate hydrolysis led buffer capacity above pH 4.5 and below pH 4.5 aluminum hydrolysis.

  • PDF

Optimization of DME Reforming using Steam Plasma (수증기 플라즈마를 이용한 DME 개질의 최적화 방안 연구)

  • Jung, Kyeongsoo;Chae, U-Ri;Chae, Ho Keun;Chung, Myeong-Sug;Lee, Joo-Yeoun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.5
    • /
    • pp.9-16
    • /
    • 2019
  • In today's global energy market, the importance of green energy is emerging. Hydrogen energy is the future clean energy source and one of the pollution-free energy sources. In particular, the fuel cell method using hydrogen enhances the flexibility of renewable energy and enables energy storage and conversion for a long time. Therefore, it is considered to be a solution that can solve environmental problems caused by the use of fossil resources and energy problems caused by exhaustion of resources simultaneously. The purpose of this study is to efficiently produce hydrogen using plasma, and to study the optimization of DME reforming by checking the reforming reaction and yield according to temperature. The research method uses a 2.45 GHz electromagnetic plasma torch to produce hydrogen by reforming DME(Di Methyl Ether), a clean fuel. Gasification analysis was performed under low temperature conditions ($T3=1100^{\circ}C$), low temperature peroxygen conditions ($T3=1100^{\circ}C$), and high temperature conditions ($T3=1376^{\circ}C$). The low temperature gasification analysis showed that methane is generated due to unstable reforming reaction near $1100^{\circ}C$. The low temperature peroxygen gasification analysis showed less hydrogen but more carbon dioxide than the low temperature gasification analysis. Gasification analysis at high temperature indicated that methane was generated from about $1150^{\circ}C$, but it was not generated above $1200^{\circ}C$. In conclusion, the higher the temperature during the reforming reaction, the higher the proportion of hydrogen, but the higher the proportion of CO. However, it was confirmed that the problem of heat loss and reforming occurred due to the structural problem of the gasifier. In future developments, there is a need to reduce incomplete combustion by improving gasifiers to obtain high yields of hydrogen and to reduce the generation of gases such as carbon monoxide and methane. The optimization plan to produce hydrogen by steam plasma reforming of DME proposed in this study is expected to make a meaningful contribution to producing eco-friendly and renewable energy in the future.

Recent Progress in Air Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 (공기조화, 냉동 분야의 최근 연구 동향: 2006년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Shin, Dong-Sin;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.6
    • /
    • pp.427-446
    • /
    • 2008
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2006 has been accomplished. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro heat exchanger and siphon cooling device using nano-fluid. Traditional CFD and flow visualization methods were still popular and widely used in research and development. Studies about diffusers and compressors were performed in fluid machinery. Characteristics of flow and heat transfer and piping optimization were studied in piping systems. (2) The papers on heat transfer have been categorized into heat transfer characteristics, heat exchangers, heat pipes, and two-phase heat transfer. The topics on heat transfer characteristics in general include thermal transport in a cryo-chamber, a LCD panel, a dryer, and heat generating electronics. Heat exchangers investigated include pin-tube type, plate type, ventilation air-to-air type, and heat transfer enhancing tubes. The research on a reversible loop heat pipe, the influence of NCG charging mass on heat transport capacity, and the chilling start-up characteristics in a heat pipe were reported. In two-phase heat transfer area, the studies on frost growth, ice slurry formation and liquid spray cooling were presented. The studies on the boiling of R-290 and the application of carbon nanotubes to enhance boiling were noticeable in this research area. (3) Many studies on refrigeration and air conditioning systems were presented on the practical issues of the performance and reliability enhancement. The air conditioning system with multi indoor units caught attention in several research works. The issues on the refrigerant charge and the control algorithm were treated. The systems with alternative refrigerants were also studied. Carbon dioxide, hydrocarbons and their mixtures were considered and the heat transfer correlations were proposed. (4) Due to high oil prices, energy consumption have been attentioned in mechanical building systems. Research works have been reviewed in this field by grouping into the research on heat and cold sources, air conditioning and cleaning research, ventilation and fire research including tunnel ventilation, and piping system research. The papers involve the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies on indoor air quality took a great portion in the field of building environments. Various other subjects such as indoor thermal comfort were also investigated through computer simulation, case study, and field experiment. Studies on energy include not only optimization study and economic analysis of building equipments but also usability of renewable energy in geothermal and solar systems.

Atmospheric Circulation Patterns Associated with Particulate Matter over South Korea and Their Future Projection (한반도 미세먼지 발생과 연관된 대기패턴 그리고 미래 전망)

  • Lee, Hyun-Ju;Jeong, YeoMin;Kim, Seon-Tae;Lee, Woo-Seop
    • Journal of Climate Change Research
    • /
    • v.9 no.4
    • /
    • pp.423-433
    • /
    • 2018
  • Particulate matter air pollution is a serious problem affecting human health and visibility. The variations in $PM_{10}$ concentrations are influenced by not only local emission sources, but also atmospheric circulation conditions. In this study, we investigate the temporal features of $PM_{10}$ concentrations in South Korea and the atmospheric circulation patterns associated with high concentration episodes of $PM_{10}$ during winter (December-January-February) 2001-2016. Based on those analyses, a Korea Particulate matter Index (KPI) is developed to represent the large-scale atmospheric pattern associated with high concentration episodes of $PM_{10}$. The atmospheric patterns are characterized by persistent high-pressure anomalies, weakened lower-level north-westerly anomalies, and northward shift of the upper-level meridional wind anomalies near the Korean Peninsula. To evaluate the change in occurrence of high concentration episodes of $PM_{10}$ under a possible future warmer climate, we apply KPI analysis to CMIP5 climate simulations. Here, historical and two representative concentration pathway (RCP) scenarios (RCP 4.5 and RCP 8.5) are used. It is found that the occurrence of atmospheric conditions favorable for high $PM_{10}$ concentration episodes tends to increase over South Korea in response to climate change. This suggests that large-scale atmospheric circulation changes under future warmer climate can contribute to increasing high $PM_{10}$ concentration episodes in South Korea.

Effects of Environmental Factors on Phytoplankton Succession and Community Structure in Lake Chuncheon, South Korea (환경요인이 춘천호의 식물플랑크톤 천이 및 군집구조에 미치는 영향)

  • Baek, Jun-Soo;Youn, Seok-Jea;Kim, Hun-Nyun;Sim, Youn-Bo;Yoo, Soon-Ju;Im, Jong-Kwon
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.2
    • /
    • pp.71-80
    • /
    • 2019
  • Effects of environmental factors on phytoplankton succession and community structure were studied in Lake Chuncheon located in Bukhan River, South Korea. The data were sampled at three sites such as CC1 (lower side), CC2 (middle side), and CC3 (upper side of Lake Chuncheon) from 2014 to 2017. The annual average precipitation in Lake Chuncheon was 992 mm during the study period (2014~2017), and the annual precipitation was lower than 800 mm in 2014 and 2015. The annual average water temperature, total phosphorus (TP), and total nitrogen (TN) ranged from 17.0 to $21.1^{\circ}C$, 0.012 to $0.019mg\;L^{-1}$, and 1.272 to $1.922mg\;L^{-1}$, respectively. The TN concentration was relatively high in 2015 compared with the other study years, as a drought continued from 2014 to 2015. When comparing the correlation between precipitation and environmental factors, water temperature (p<0.01) and TP(p<0.05) showed positive correlations with rainfall. The average numbers of phytoplankton cells by branch were 2,094, 2,182, and $3,108cells\;mL^{-1}$ in CC1, CC2, and CC3, respectively. CC3 is considered advantageous for phytoplankton growth, even in small pollution sources due to low water depth. As a result of analyzing the relationship between precipitation and phytoplankton, the correlation between the two was shown to be high for 2016 (p<0.01) and 2017 (p<0.05), which is when precipitation was high. However, the correlation was not clear to 2014 and 2015. The relationship between water temperature and phytoplankton indicated a negative correlation with diatoms (p<0.01), yet positive correlations with green algae (p<0.01) and cyanobacteria (p<0.01). Diatoms increased in spring and autumn, which are characterized by low water temperature, and green algae and cyanobacteria increased in summer, when the water temperature is high. Our findings provide a scientific basis for characteristics of phytoplankton and water quality and management at the Lake Chuncheon.

Analysis of Monitoring Characteristics of Small Stream for TMDL (오염총량관리를 위한 소하천 모니터링 자료의 특성 분석)

  • Ha, Don-Woo;Park, Seung-Ho;Joo, Sungmin;Lee, Gi-Soon;Baek, Jong-Hun;Jung, Kang-Young;Lee, Youngjea;Kim, Kyunghyun;Kim, Young-Suk
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.503-513
    • /
    • 2018
  • In order to continuous watershed management and improve water quality at Yeong-san river system, we analyzed and evaluated data on the monitoring of small stream in city and county boundaries within the watershed. In-period monitoring is estimated to be more frequent in the second quarter than the first quarter, so it should be considered when evaluating the target water quality by setting the target water quality. A small stream in the Yeong-san river system has higher concentration in the downstream area than the upstream area. As a result of calculating the load of the measuring point, Y.b B3(Pungyeongjeongcheon) and Y.b E1(Sampocheon) were high. The result of correlation analysis by monitoring point in order to evaluate the correlation between BOD and T-P items, BOD was highly correlated with COD and TOC, and was affected by emission of pollutants related to organic matter. T-P was highly correlated with SS and COD, and was affected by rainfall. This study will provide basic data and direction for designing efficient and scientific method for water quality management by analyzing accumulated water quality data by conducting long-term monitoring.

A Change of Stream Water Quality by Forest Types (임상에 따른 계류수의 수질변화에 관한 연구)

  • Ma, Ho-Seop;Kang, Won-Seok;Kang, Eun-Min
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.142-148
    • /
    • 2011
  • This study was carried out to clarify the change characteristics of stream water quality by type of forest from June to August, 2009 in three stands (Castanea crenata, Pinus densiflora and Plantation Land) of Samgye-ri Naedong-myeon Jinju-si Gyeongsangnam-do. The pH of stream water in three stands was highest in Pinus densiflora (pH 7.18) followed by Castanea crenata (pH 6.90) and Plantation land (pH 6.90) while the electrical conductivity of stream water was highest in Plantation land followed by Castanea crenata stand and Pinus densiflora stand was the lowest. Cations contents of stream water in three stands were high in order of $Ca^{2+}$, $Na^{+}$, $Mg^{2+}$, $K^{+}$, and $NH_{4}{^{+}}$. But anions of stream water in Castanea crenata stand and Pinus densiflora stand were high in order of $SO_{4}{^{2-}}$, $Cl^{-}$ and $NO_{3}{^{-}}$ while those of stream water in Plantation land were high in order of $SO_{4}{^{2-}}$, $NO_{3}{^{-}}$ and $C\lambda^{-}$. The stream water in three stands was significant at pH, EC, $NO{^{3-}}$, $Ca^{2+}$, $Mg^{2+}$, $Na^{+}$, $Cl^{-}$, TNU and Color by duncan test. These results indicate that quality of stream water have a difference among three stands. The level of pH, $NH_{4}{^{+}}$, $Cl^{-}$, $SO_{4}{^{2-}}$ and $NO_{3}{^{-}}$ of stream water in three stands were within the domestic use standard for drinking water. but turbidity and color of stream water were more than that of domestic use standard for drinking water. Therefore, non-point sources like urban forest watersheds which are soil erosion and fertilizer application lands should be taken to the appropriate mitigation measures if they are to be used as source of drinking water.

Chemical Characteristics of Shallow Groundwater in an Agricultural District of Hyogyo-ri Area, Chungnam Province (충남 효교리 농업지역 천부지하수의 화학적 특성)

  • Jeon, Hang-Tak;Hamm, Se-Yeong;Choi, Eun-Gyeong;Kim, HyunKoo;Kim, MoonSu;Park, Ki-Hoon;Lim, Woo-Ri
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.630-646
    • /
    • 2020
  • In rural areas, nitrate-nitrogen (NO3-N) pollution caused by agricultural activities is a major obstacle to the use of shallow groundwater as domestic water or drinking water. In this study, the water quality characteristics of shallow groundwater in Hyogyo-ri agricultural area of Yesan-gun, Chungcheongnam-do province was studied in connection with land use and chemical composition of soil layer. The average NO3-N concentration in groundwater exceeds the domestic and agricultural standard water qualities of Korea and is caused by anthropogenic sources such as fertilizer, livestock wastewater, and domestic sewage. The groundwater type mainly belongs to Ca(Na)-Cl type, unlike Ca-HCO3 type, a general type of shallow groundwater. The average NO3-N concentration (7.7 mg L-1) in groundwater in rice paddy/other (upstream, ranch, and residential) area is lower than the average concentration (22.8 mg L-1) in farm field area, due to a lower permeability in paddy area than that in farm field area. According to the trend analysis by the Mann-Kendall and Sen tests, the NO3-N concentration in the shallow groundwater shows a very weak decreasing trend with ~0.011 mg L-1yr-1 with indicating almost equilibrium state. Meanwhile, SO42- and HCO3- concentrations display annual decreasing trend by 15.48 and 13.15%, respectively. At a zone of 0 to 5 m below the surface, the average hydraulic conductivity is 1.86×10-5 cm s-1, with a greater value (1.03×10-4cm s-1) in sand layer and a smaller value (2.50×10-8 cm s-1) in silt layer.