• Title/Summary/Keyword: Pollution sources

Search Result 1,051, Processing Time 0.027 seconds

Water Management Plan for the Nakdong River Using TOC and COD (총유기탄소와 화학적산소요구량을 이용한 낙동강 물관리 방안)

  • Bo Eun Kim;Meea Kang;Gyo-Cheol Jeong
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.51-59
    • /
    • 2023
  • The Nakdong river is both a natural resource crucial to underwater ecosystems and a water source for its basin's residents. Industrial wastewater and domestic sewage must meet the relevant standards for discharged water before they can flow into the river. The correlation between old and new measures of organic matter was examined using water quality data from 50 monitoring locations in the main stream of the Nakdong river. The coefficient of determination (R2) for total organic carbon (TOC), the new measure of organic matter, and chemical oxygen demand (COD), the old measure of organic matter, in the main stream of the Nakdong river was 0.6134, indicating high correlation. Water quality at each location assessed using TOC and COD showed disparities that cannot be ignored: quality appeared higher when evaluating the main stream of the Nakdong river using TOC instead of COD. Therefore, there remains a need to review water quality ratings based on TOC; continuous monitoring of COD is also required. In addition, the cause of the difference should be clearly identified to help assess artificial sources of pollution and natural factors affecting organic matter. Water management of the Nakdong river will then be possible using the water quality rating.

Analysis of the Legal Blind Sectors of the Large-Scale Offshore Wind Farms of Korea and Proposal to Improve Safety Management (대규모 해상풍력발전단지의 안전관리를 위한 법적 사각지대 분석 및 개선 제안)

  • Inchul Kim;Dong Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.127-138
    • /
    • 2023
  • A variety of decarbonized energy sources are being developed globally to realize carbon neutrality (Net Zero) by 2050 as a measure to address the global climate crisis. As the Korean government has also established a Renewable Energy 3020 policy and promoted energy development plans using solar or wind power, large-scale offshore development projects not present before in coastal waters, such as offshore wind farms, are being promoted. From ships' point of view, offshore facilities present obstacles to safe navigation, and with the installation of marine facilities, ship collisions or contact accidents between ships and marine facilities may occur in the narrowed water areas. In addition, there are concerns about environmental pollution and human casualties caused by marine accidents. Accordingly, we review overseas and domestic offshore wind farm development plans, analyze whether institutional devices are in place to ensure the safe passage of ships in wind farm areas, and study the safe operation of large-scale offshore wind farms and safe passage of ships along the Korean coast by comparing overseas legislative cases with domestic laws and presenting a proposal to illuminate the legal blind sectors.

A Study on Estimating Ship's Emission in the Port Area of Mokpo Port (목포항 항만구역 내 선박 배기가스 배출량 산정에 대한 연구)

  • Bui, Hai-Dang;Kim, Hwayoung
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.3
    • /
    • pp.47-60
    • /
    • 2023
  • A thorough inventory of ship emissions, particularly ship's emission of in-port area is necessary to identify significant sources of exhaust gases such as NOx, SOx, PM, and CO2 and trends in emission levels over time, and reduce their serious effects on the environment and human health. Therefore, the goal of this study is to assess the volume of emissions from ships in Mokpo port, which serves as a gateway to the southwest coast of Korea, using a bottom-up methodology and data from the automatic identification system (AIS) and the Korean Port Management Information System (Port-MIS). In this work, an analysis of ship movement utilizing AIS data and an actual set of data on ship specification were gathered. By examining ship movement using AIS data, We also proposed a new approach for identifying cruising/maneuvering mode. Finally, the results were classified by ship operating mode, by exhaust gas, by ship type, and by berth, which provides a thorough and in-depth analysis of the air pollution caused by ships in Mokpo port.

A study of origins and characteristics of metallic elements in PM10 and PM2.5 at a suburban site in Taean, Chungchengnam-do (충청남도 태안 교외대기 PM10, PM2.5의 중금속 농도 특성과 기원 추적연구)

  • Sangmin Oh;Suk-Hee Yoon;Jaeseon Park;Yu-Jung Heo;Soohyung Lee;Eun-Jin Yoo;Min-Seob Kim
    • Particle and aerosol research
    • /
    • v.19 no.4
    • /
    • pp.111-128
    • /
    • 2023
  • Chungcheongnam-do has various emission sources, including large-scale facilities such as power plants, steel and petrochemical industry complexes, which can lead to the severe PM pollution. Here, we measured concentrations of PM10, PM2.5, and its metallic elements at a suburban site in Taean, Chungcheongnam-do from September 2017 to June 2022. During the measurement period, the average concentrations of PM10 and PM2.5 were 58.6 ㎍/m3 (9.6~379.0 ㎍/m3) and 35.0 ㎍/m3 (6.1~132.2 ㎍/m3), respectively. The concentration of PM10 and PM2.5 showed typical seasonal variation, with higher concentration in winter and lower concentration in summer. When high concentrations of PM2.5 occurred, particulary in winter, the fraction of Zn and Pb components considerably increased, indicating a significant contribution of Zn and Pb to high-PM2.5 concentration. In addition, Zn and Pb exhibited the highest correlation coefficient among all other metallic elements of PM2.5. A backward trajectory cluster analysis and CPF model were performed to examine the origin of PM2.5. The high concentration of PM2.5 was primarily influenced by emissions from industrial complexes located in the northeast and northwest areas.

CHANGES IN WATER USE AND MANAGEMENT OVER TIME AND SIGNIFICANCE FOR AUSTRALIA AND SOUTH-EAST ASIA

  • Knight, Michael J.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.11a
    • /
    • pp.3-31
    • /
    • 1997
  • Water has always played a significant role in the lives of people. In urbanised Rome, with its million people. sophisticated supply systems developed and then fled with the empire. only to be rediscovered later But it was the industrial Revolution commencing in the eighteenth century that ushered in major paradigm shifts In use and altitudes towards water. Rapid and concentrated urbanisation brought problems of expanded demands for drinking supplies, waste management and disease. The strategy of using water from local streams, springs and village wells collapsed under the onslaughts of rising urban demands and pollution due to poor waste disposal practices. Expanding travel (railways. and steamships) aided the spread of disease. In England. public health crises peaks, related to water-borne typhoid and the three major cholera outbreaks occurred in the late eighteenth and early nineteenth century respectively. Technological, engineering and institutional responses were successful in solving the public health problem. it is generally accepted that the putting of water into pipe networks both for a clean drinking supply, as well as using it as a transport medium for removal of human and other wastes, played a significant role in towering death rates due to waterborne diseases such as cholera and typhoid towards the end of the nineteenth century. Today, similar principles apply. A recent World Bank report Indicates that there can be upto 76% reduction in illness when major water and sanitation improvements occur in developing countries. Water management, technology and thinking in Australia were relatively stable in the twentieth century up to the mid to late 1970s. Groundwater sources were investigated and developed for towns and agriculture. Dams were built, and pipe networks extended both for supply and waste water management. The management paradigms in Australia were essentially extensions of European strategies with the minor adaptions due to climate and hydrogeology. During the 1970s and 1980s in Australia, it was realised increasingly that a knowledge of groundwater and hydrogeological processes were critical to pollution prevention, the development of sound waste management and the problems of salinity. Many millions of dollars have been both saved and generated as a consequence. This is especially in relation to domestic waste management and the disposal of aluminium refinery waste in New South Wales. Major institutional changes in public sector water management are occurring in Australia. Upheveals and change have now reached ail states in Australia with various approaches being followed. Market thinking, corporatisation, privatisation, internationalisation, downsizing and environmental pressures are all playing their role in this paradigm shift. One casualty of this turmoil is the progressive erosion of the public sector skillbase and this may become a serious issue should a public health crisis occur such as a water borne disease. Such crises have arisen over recent times. A complete rethink of the urban water cycle is going on right now in Australia both at the State and Federal level. We are on the threshold of significant change in how we use and manage water, both as a supply and a waste transporter in Urban environments especially. Substantial replacement of the pipe system will be needed in 25 to 30 years time and this will cost billions of dollars. The competition for water between imgation needs and environmental requirements in Australia and overseas will continue to be an issue in rural areas. This will be especially heightened by the rising demand for irrigation produced food as the world's population grows. Rapid urbanisation and industrialisation in the emerging S.E Asian countries are currently producing considerable demands for water management skills and Infrastructure development. This trend e expected to grow. There are also severe water shortages in the Middle East to such an extent that wars may be fought over water issues. Environmental public health crises and shortages will help drive the trends.

  • PDF

Analysis of Polluting Concentrations in Forestry Soils in Air Polluted Areas (대기오염지역주변(大氣汚染地域周邊) 삼림토양(森林土壤)의 오염농도(汚染濃度) 분석(分析))

  • Kim, Jong-Kab;Kim, Jeom-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.10 no.2
    • /
    • pp.158-166
    • /
    • 1991
  • This study was performed to survey the pollution levels of Pinus Thunbergii forest soil surrounding. The Onsan industrial complexes of caused by the surrounding polluted air. The results are summarized as follows. 1. The forestry soil pH in the vicinity of the industrial complex showed severe acidity in the range of pH $4.2{\sim}4.8$. And also the available Al was higher in the acidified soils. 2. The available S was in the range of $21ppm{\sim}638ppm$, and was highest within 2km of the industrial complex and difference greatly depending on distance from the source. 3. Heavy metals soil, concentrations of Fe, Zn and Cu were $0.9ppm{\sim}73.7ppm$, $0.09ppm{\sim}6.68ppm$ and $0.10ppm{\sim}62.10ppm$, respectively and there were many site difference, especially high concentrations were observed in source nearest seaside. The sites and showed that soil pollution had been progressing in these sites. 4. The concentrations of Pb and Cd generally showed low contents as $0.06ppm{\sim}0.07ppm$ and $0.06ppm{\sim}0.24ppm$ respectively and Cd contents were also high in seaside sites near sources. 5. The results of correlation between soil factors were significant between soil pH and Al(r=0.588) at 1% and soil pH and S(r=0.469), Zn(r=0.491) and Cu(r=0.475) at 5% respectively. 6. In the correlations among the heavy metals, there were significant high correlations between Fe and Zn(r=0.833), Cu(r=0.846) and Pb(r=0.583), and Zn and Cu(r=0.773), Cu and Pb(r=0.746) at 1%, whereas correlations between Zn and Pb(r=0.529), and Zn and Cd(r=0.457) were relatively low at 5%.

  • PDF

A Study on the Role of United Nations Regional Group System for the London Protocol (런던의정서에서 유엔 지역그룹체제의 역할에 관한 연구)

  • Moon, Byung-Ho;Hong, Gi-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.135-150
    • /
    • 2010
  • At the Intergovernmental Meeting held in 1972, the London Convention was adopted to prevent marine pollution from dumping of wastes and other matter. After that, at the special meeting held at the Headquarters of the International Maritime Organization in 1996, the London Convention was revised to consider advances in technology of treatment and disposal of wastes and to reflect changes in understanding of marine environment and then the London Protocol was concluded. The London Protocol states more concrete management system for ocean dumping than the London Convention and also provides that the Meeting of Contracting Parties shall establish those procedures and mechanisms necessary to assess and promote compliance with the Protocol. With the London Protocol in force since 24 March 2006, the Meeting of Contracting Parties adopted the 'Compliance Procedures and Mechanisms (CPM) pursuant to Article 11 of the 1996 Protocol to the London Convention 1972' and established the Compliance Group in 2007. According to the CPM, members of the Compliance Group shall be nominated by Contracting Parties, based on equitable and balanced geographic representation of the five Regional Groups of the United Nations, and elected by the Meeting of Contracting Parties. In 2009, the Republic of Korea nominated a member of the Compliance Group to be subsequently elected by the Meeting of Contracting Parties with the approval of other states in Asia Group. Through the United Nations Regional Group System based on geographical identity or political affinity, Contracting Parties to the London Protocol are expected to form a voting bloc or to exchange information in meetings on the London Protocol. In this sense, it is noteworthy that the London Protocol introduced marine environmental management system for comprehensive prohibition of ocean dumping with exception of the so-called 'reverse-list' which had been earlier adopted by the 'Convention for the Protection of the Marine Environment of the North-East Atlantic, 1992 (OSPAR)' whose contracting parties belonged to Western European and Other States Group. In recent years, the jurisdiction of London Protocol has been extended to protect and preserve the marine environment from all sources of pollution. This will make the United Nations Regional Group System play more important roles in the activities associated with the London Protocol. For this reason, this article has considered characteristics of the United Nations Regional Group System and has analyzed influences of this Regional Group System in meetings on the London Protocol. This could provide preliminary information for the Republic of Korea to give due consideration to the United Nations Regional Group System on the activities associated with the London Protocol.

Management Strategy of Indoor Hazardous Chemicals (실내.외 통합 모델링 및 인체 위해성 평가를 통한 실내 유해화학물질의 관리 전략)

  • Shin, Yong-Seung;Lim, Hye-Sook
    • Journal of Environmental Policy
    • /
    • v.7 no.2
    • /
    • pp.67-90
    • /
    • 2008
  • The purpose of this study is to develop indoor air quality management strategies regarding indoor air pollutants while considering various factors affecting indoor pollutants concentration. The Integrated Indoor Air Quality model(IIAQ) developed by Seoul National University is used for this study. The IIAQ model is a tool that can provide an integrated view to indoor environmental pollution by simulating suggested scenarios. The results of the modeling are used to assess health risk. The concentrations that are used for the risk characterization are weighted concentrations based on the period of time in each place and existing Indoor Air Quality(IAQ) standards. The estimated concentration of toluene and formaldehyde for 10 years through the IIAQ model was 207.3 $ug/m^3$ and 36.4 $ug/m^3$ in indoors, and 55.9 $ug/m^3$ and 8.62 $ug/m^3$ in outdoors. These concentrations are lower than the existing IAQ standards. The estimated carcinogenic risk of formaldehyde is up to 1.05E-03 for the adult male group and exceeds 1E-06 for all receptor groups. This value means that cancer could affect one person out of 1000. The estimated non-carcinogenic risk of toluene was lower than 1, which means that there was no serious non- carcinogenic risk. The result of modeling shows that using low emitting indoor sources is the most effective strategy for both formaldehyde and toluene. This risk assessment suggests that the total exposure levels of existing IAQ standards may cause serious carcinogenic risk. In order to avoid uncontrolled risk, it is suggested that the current IAQ standards should be adjusted by taking into account the total amount of exposure from all exposure pathways from indoor and outdoor sources.

  • PDF

Tracking lead contamination sources of sediments in Lake Andong using lead isotopes (납 동위원소를 이용한 안동호 퇴적물 중의 납 오염 기원)

  • Park, Jin-Ju;Kim, Ki-Joon;Yoo, Suk-Min;Kim, Eun-Hee;Seok, Kwang-Seol;Shin, Hyung Seon;Kim, Young-Hee
    • Analytical Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.429-434
    • /
    • 2012
  • The objective of this study was to identify Pb pollution sources of sediments in Lake Andong. We analysed Pb isotopes in sediments from Lake Andong, soils and mining tails from the watershed as well as sludges and wastewater from zinc smelting facilities which exists in upper stream of Lake Andong. The Pb isotope ratios ($^{207}Pb/^{206}Pb$ and $^{208}Pb/^{206}Pb$) for sediments are $0.827{\pm}0.004$ and $2.041{\pm}0.015$, which showed similar values with those of mining tails, $0.815{\pm}0.002$ and $2.016{\pm}0.006$, respectively. The isotopic ratio values of soils existed in the range of 0.756~0.881 and 1.872~2.187. In imported zinc ores, the isotopic ratio values existed in the range of 0.816~0.956 (mean 0.832) and 2.029~2.219 (mean 2.059). These values were similar to those in zinc and lead concentrate originated from Canada and South America. Additionally, isotopic ratio values for sludge and wastewater were $17.515{\pm}0.155$, $15.537{\pm}0.018$, and $37.357{\pm}0.173$, respectively. The Pb isotopic ratio of sediments showed binary combination patterns with soil and mining tails, which were similar to those for Korean Pb ore.

Study of Oil Palm Biomass Resources (Part 5) - Torrefaction of Pellets Made from Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 V - 오일팜 바이오매스 펠릿의 반탄화 연구 -)

  • Lee, Ji-Young;Kim, Chul-Hwan;Sung, Yong Joo;Nam, Hye-Gyeong;Park, Hyeong-Hun;Kwon, Sol;Park, Dong-Hun;Joo, Su-Yeon;Yim, Hyun-Tek;Lee, Min-Seok;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.34-45
    • /
    • 2016
  • Global warming and climate change have been caused by combustion of fossil fuels. The greenhouse gases contributed to the rise of temperature between $0.6^{\circ}C$ and $0.9^{\circ}C$ over the past century. Presently, fossil fuels account for about 88% of the commercial energy sources used. In developing countries, fossil fuels are a very attractive energy source because they are available and relatively inexpensive. The environmental problems with fossil fuels have been aggravating stress from already existing factors including acid deposition, urban air pollution, and climate change. In order to control greenhouse gas emissions, particularly CO2, fossil fuels must be replaced by eco-friendly fuels such as biomass. The use of renewable energy sources is becoming increasingly necessary. The biomass resources are the most common form of renewable energy. The conversion of biomass into energy can be achieved in a number of ways. The most common form of converted biomass is pellet fuels as biofuels made from compressed organic matter or biomass. Pellets from lignocellulosic biomass has compared to conventional fuels with a relatively low bulk and energy density and a low degree of homogeneity. Thermal pretreatment technology like torrefaction is applied to improve fuel efficiency of lignocellulosic biomass, i.e., less moisture and oxygen in the product, preferrable grinding properties, storage properties, etc.. During torrefacton, lignocelluosic biomass such as palm kernell shell (PKS) and empty fruit bunch (EFB) was roasted under an oxygen-depleted enviroment at temperature between 200 and $300^{\circ}C$. Low degree of thermal treatment led to the removal of moisture and low molecular volatile matters with low O/C and H/C elemental ratios. The mechanical characteristics of torrefied biomass have also been altered to a brittle and partly hydrophobic materials. Unfortunately, it was much harder to form pellets from torrefied PKS and EFB due to thermal degradation of lignin as a natural binder during torrefaction compared to non-torrefied ones. For easy pelletization of biomass with torrefaction, pellets from PKS and EFB were manufactured before torrefaction, and thereafter they were torrefied at different temperature. Even after torrefaction of pellets from PKS and EFB, their appearance was well preserved with better fuel efficiency than non-torrefied ones. The physical properties of the torrefied pellets largely depended on the torrefaction condition such as reaction time and reaction temperature. Temperature over $250^{\circ}C$ during torrefaction gave a significant impact on the fuel properties of the pellets. In particular, torrefied EFB pellets displayed much faster development of the fuel properties than did torrefied PKS pellets. During torrefaction, extensive carbonization with the increase of fixed carbons, the behavior of thermal degradation of torrefied biomass became significantly different according to the increase of torrefaction temperature. In conclusion, pelletization of PKS and EFB before torrefaction made it much easier to proceed with torrefaction of pellets from PKS and EFB, leading to excellent eco-friendly fuels.