• Title/Summary/Keyword: Pollution events

Search Result 174, Processing Time 0.026 seconds

Application of AGNPS Model for Nitrogen and Phosphorus Load in a Stream Draining Small Agricultural Watersheds (소규모 농업유역에서 질소와 인의 하천 부하에 대한 AGNPS 모형의 적용)

  • Kim, Min-Kyeong;Choi, Yun-Yeong;Kim, Bok-Jin;Lim, Jun-Young;Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.3
    • /
    • pp.192-200
    • /
    • 2001
  • The event-based agricultural non-point source(AGNPS) pollution model was applied to estimate the loads of nitrogen and phosphorus in a stream draining small agricultural watersheds. Calibration and verification of the model were performed using observed data collected from rainfall events in the Imgo watersheds during 1997-1998. Parameter calibrations were made for the runoff curve number. The peak flow volumes in the watersheds were well reproduced by the modified model. Average deviation between observed and simulated values was 10%, and this match was confirmed by the coefficient of efficiency value of 0.97. The deviations tended to increase as the peak flows increased. The simulated total N concentrations in the stream water were fairly close to the measured values, and the coefficient of efficiency in the estimation was 0.93. However, there were relatively large variations between calculated and observed values of total P concentration, and the coefficient of efficiency in the estimation was 0.74. Any inaccuracies that arise in estimating runoff flow and nutrient loading can not be explained exactly and further adjustment and refinements may be needed for application of AGNPS in agricultural watersheds. With this restrictions in mind, it can be concluded that AGNPS can provide realistic estimates of nonpoint source nutrient yields.

  • PDF

Study of Pro-environmental Development for Golf Course in Korea (한국 골프장의 친환경적 개발에 관한 연구)

  • 김광두
    • Asian Journal of Turfgrass Science
    • /
    • v.12 no.1
    • /
    • pp.49-78
    • /
    • 1998
  • Nowadays, there are increasing demands of golf courses and it is necessary to make more golf courses than the present. To do this, we need to improve the environmental problems with the regional inhabitants, and it is said that the first thing to be considered in developing any golf course in Korea is to preserve the environment. In this context, the purpose of this study is to set forth several design factors to lessen the negative impacts which are accompanied with the development of golf courses. 1. The present conditions of golf courses in Korea Many new golf courses have come into being, particularly since the late 1980s, and now, in the year of 1997, over one hundred of golf courses are doing their business, yet the number of golf course is still less than required. So far, over a half of them have been made in the vicinity of Seoul on account of various reasons, and this has adversely affected on our natural environment. This unreasonable development of golf courses has caused serious water pollution, landslides and the other problems. Also, the topography of Korea is not good for golf courses. Although the demands of golf courses are increasing, the suitable sites for them are very limited, and therefore it is sometimes unavoidable to make golf courses on steep hills. Consequently, in designing golf courses in Korea, the most important thing is the balance between natural environment and artificial environment. 2.Eco-friendly golf course design factors 1) The concept of eco-friendly golf courses Ecologically sustainable and sound golf courses which are made by eco-friendly approaches 2)Basic conditions of eco-friendly golf courses (1)The most suitable sites (2) Conservation of existing ground as much as possible (3)Proper use of agricultural chemicals which have great impacts on the environment (4) Reasonable use of fertilizers (5) Developing a specialized fertilizer only for grass (6) Adaptation of organic agriculture (7) Improvement of grass sorts (8) Establishing reservoirs for purifying the water from golf courses 3) Eco-friendly golf courses (1) Location-Enough area /Gentle slope/Winding ground/Including lakes or streams /Not crossing wind's main direction Facing south or southeast /Suitable soIl for grass /Good drainage /Low level of underground water (2)Course layout and design -Consideration about existing contours as much as possible -Adaptation of Scotish design trend -Various holes' configuration -Consideration toward surrounding landscapes -Reducing grass areas -Giving buffer zones -Adapting computer methods in the process of site analysis and design (3) Eco-friendly considerations in constructing and managing golf courses -Protection of wildlife -Reuse of existing forests and preservation of topsoil -Renovation of old-fashioned courses -Reducing grass areas -Purification of water -Standization of management -Strict regulations against chemicals -Recycling organic materials -Through separation of the water inside golf courses and out of bounds -Getting proper construction works done in a due time 4.Eco-friendly considerations from a viewpoint of cultural environment 1) Well-matched landscape design and events planning 2) Implement of identifications and awarding systerns 3)Acknowledgement of superintendents' qualitications in the maintenance of golf courses 4)Increasing public golf courses and keeping good relationships with the neighbors near golf courses Key words: Pro-environmental development, Golf course.

  • PDF

Characteristics of Temporal Variation on Water Quality (T-P, T-N, CODMn, SS, BOD5) in the Jungrang Stream during Rainfall Event (강우 시 중랑천 유역의 수질(T-P, T-N, CODMn, SS, BOD5)변화 특성)

  • Jung, Jaehyung;Zhou, Xing;Lee, Taejin;Kwon, O-Yul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.6
    • /
    • pp.412-420
    • /
    • 2014
  • Water quality variations were investigated at 4 locations of Jungrang river (upper, middle and lower basins) during a period of 3 rainfall events. During the rainfall, concentrations of $COD_{Mn}$, SS and $BOD_5$ significantly increased, while the concentration of T-N decreased and that of T-P remained relatively constant. This pattern became more apparent as the level of accumulative precipitation and rainfall intensity increased. Simple regression analysis showed that the accumulative precipitation was positively correlated with all water quality pollutants except for T-N. With increasing accumulative precipitation, the concentration of T-N decreased, while the others increased. $R^2$ of simple regressions of hourly average rainfall intensity and water quality pollutants, showed wider range of variation ranged from 0.483 to 0.992, which indicated a strong correlation. The stronger the hourly average rainfall intensity, the more T-N and T-P in the upper basin, more $COD_{Mn}$ in the middle and lower basins, more SS with gradual increase from upper to lower areas, and more $BOD_5$ with gradual decrease from upper to lower region. Simple regression showed that water quality pollution in the upper basin was more sensitive to an increase of rainfall discharge than that in the middle and lower areas.

Characteristics of heavy metal concentrations in urban stormwater runoff, Daejeon, Korea (도시 유역 강우유출수 내 중금속 농도의 변화 특성에 관한 연구)

  • Yu, Eunjin;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.917-927
    • /
    • 2018
  • Seven heavy metal concentrations (As, Cd, Cr, Cu, Ni, Pb, Zn) were continuously analyzed for twenty rainfall events in 2017~2018 in an urban basin. The overall and dynamic correlations between runoff characteristics and heavy metal concentrations were examined. The peak metal concentration generally appeared in the initial runoff but found to be delayed when the rainfall intensity was low. The rainfall duration had no relationship with either heavy metal concentrations or their total mass. Dynamics of heavy metal mass (load), with the exception of Cu and Zn, showed strong correlation with the 30 minute rainfall intensity (0.60~0.88) and runoff volume (0.74~0.89). While event mean concentration (EMC) showed positive correlation (0.54~0.73) with antecedent dry days (ADD), no significant relationship was found between runoff volume and pollutant concentration. This implies that the pollutants built up on the surface during dry days are washed off even with low rainfall energy. The dynamics of heavy metal and TSS concentrations showed good correlation (0.68~0.87). This result shows that the metals are transported along with solid particles as adsorbate in surface runoff. Regular street sweeping will reduce significant amount of heavy metal loads in urban surface runoff.

Composition comparison of PM10 and PM2.5 fine particulate matter for Asian dust and haze events of 2010-2011 at Gosan site in Jeju Island (황사와 연무 시 PM10 및 PM2.5 미세먼지 조성 비교: 2010-2011년 고산지역 측정)

  • Kim, Ki-Ju;Lee, Seung-Hoon;Hyeon, Dong-Rim;Ko, Hee-Jung;Kim, Won-Hyung;Kang, Chang-Hee
    • Analytical Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • The $PM_{10}$ and $PM_{2.5}$ samples were collected at Gosan Site of Jeju Island, and analyzed, in order to investigate the size distribution and pollution characteristics of their components. $NH{_4}{^+}$, nss-$SO{_4}^{2-}$, $K^+$, and $CH_3COO^-$ were mostly existed in fine particles. Meanwhile, $NO{_3}{^-}$ was distributed in both fine and coarse particles, and $Na^+$, $Cl^-$, $Mg^{2+}$, nss-$Ca^{2+}$ were rich in coarse particle mode. The concentrations of nss-$Ca^{2+}$ and $NO{_3}{^-}$ were increased 36.7 and 3.2 times in coarse particles, and 15.0 and 3.1 times in fine particles during the Asian Dust periods. Especially, the concentrations of crustal elemental species such as Al, Fe, Ca, K, Mg, Ti, Mn, Sr, Ba were highly increased for those periods. In the haze events, the concentrations of secondary air pollutants were increased 1.3~2.6 and 1.5~4.2 times in coarse and fine particles, respectively. Moreover, the remarkable increase of $NO{_3}{^-}$ concentration was also observed in fine particle mode. The factor analysis showed that the composition of coarse particles was influenced mainly by marine sources, followed by soil and anthropogenic sources. On the other hand, the fine particles were influenced by anthropogenic sources, followed by marine and soil sources.

Analysing the effect of impervious cover management techniques on the reduction of runoff and pollutant loads (불투수면 저감기법의 유출량 및 오염부하량 저감 효과 분석)

  • Park, Hyung Seok;Choi, Hwan Gyu;Chung, Se Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.1
    • /
    • pp.16-34
    • /
    • 2015
  • Impervious covers(IC) are artificial structures, such as driveways, sidewalks, building's roofs, and parking lots, through which water cannot infiltrate into the soil. IC is an environmental concern because the pavement materials seal the soil surface, decreasing rainwater infiltration and natural groundwater recharge, and consequently disturb the hydrological cycle in a watershed. Increase of IC in a watershed can cause more frequent flooding, higher flood peaks, groundwater drawdown, dry river, and decline of water quality and ecosystem health. There has been an increased public interest in the institutional adoption of LID(Low Impact Development) and GI(Green Infrastructure) techniques to address the adverse impact of IC. The objectives of this study were to construct the modeling site for a samll urban watershed with the Storm Water Management Model(SWMM), and to evaluate the effect of various LID techniques on the control of rainfall runoff processes and non-point pollutant load. The model was calibrated and validated using the field data collected during two flood events on July 17 and August 11, 2009, respectively, and applied to a complex area, where is consist of apartments, school, roads, park, etc. The LID techniques applied to the impervious area were decentralized rainwater management measures such as pervious cover and green roof. The results showed that the increase of perviousness land cover through LID applications decreases the runoff volume and pollutants loading during flood events. In particular, applications of pervious pavement for parking lots and sidewalk, green roof, and their combinations reduced the total volume of runoff by 15~61 % and non-point pollutant loads by TSS 22~72 %, BOD 23~71 %, COD 22~71 %, TN 15~79 %, TP 9~64 % in the study site.

Correlation of Nonpoint Pollutant and Particulate Matters at a Small Suburban Area (비시가화지역에서 비점오염물질과 입자성물질의 유출 상관성)

  • Park, Ji-Young;Bae, Sang-Ho;Yoon, Young-H.;Lim, Hyun-Man;Park, Jae-Roh;Oh, Hyun-Je;Kim, Weon-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.720-728
    • /
    • 2012
  • In general, nonpoint pollutant of a watershed is drained out in the form of storm water runoff during rainfall events. As the bulk of the nonpoint pollutant is in adsorbed form on particulate matters, in order to understand the behavior of nonpoint pollutant it is essential to grasp the characteristics of particulate matters in rainfall runoff. Though, previous studies for the relationship between the runoff characteristics of pollutants and the size distribution of particulate matters are very rare. In this study, a small non-urbanized area (basin area of 52.8 ha) with various landuse types including paddy, dry fields and forest was selected and investigated in detail for the runoff properties of each pollutant during several rainfall events. The correlation and effects between particulate matters and nonpoint pollutant were analyzed quantitatively. As a result, the significant first flush was observed on each event and it became clear that fine particulate matters ($80{\mu}m$ or less) has contributed in the runoff process of nutrients and heavy metals. Organic matters ($BOD_5$, TOC), nutrients (TN, TP) and several heavy metals (Al, Cr, Cu, Fe, Hg and Zn) represented high correlations with SS (total), VSS, SS (d < $20{\mu}m$) and SS ($20{\mu}m$ $$\leq_-$$ d < $80{\mu}m$). On the other hand, $COD_{cr}$, Cd, Mn and Pb did not show clear correlations with the behavior of particulate matters. Therefore, we have to examine the introduction of nonpoint pollution mitigation facilities considering the facts that nonpoint pollutant runoff process has high correlation with the behavior of particulate matters and is changeable based on the target pollutants.

Characteristics of stormwter runoff from highways with unit traffic volume (고속도로 자동차 통행량에 따른 강우유출수 유출 특성 분석)

  • Choi, Jiyeon;Hong, Jungsun;Kang, Heeman;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.275-281
    • /
    • 2016
  • This study was conducted to analyze the runoff characteristics of the highway depending on the number of vehicles and to provide the installation proposal of an NPS pollution reduction facility. There were a total of 5 monitoring sites used for the study namely, Gyeongbu, Seohaean, Honam and Tongyeoung Dageon highway. Monitoring events started from 2006 until 2015 having a total of 44 storm events. According to monitoring statistics, the average antecedent dry days (ADD) and rainfall was 6.2 days and 19.2 mm, respectively. The Gyeongbu Highway (H-4) was recorded having the highest Average Daily Traffic and Catchment Area (ADT/CA) with $49.4car/day{\cdot}m^2$ while other site were less than $10car/day{\cdot}m^2$. The average concentration of the NPS pollutants generated from monitoring sites were 63.5 mg/L(TSS), 24.9 mg/L(BOD), 3.35 mg/L(TN), 0.63 mg/L(TP) and 298 ug/L(Total Zn). This exhibited lower values in comparison to the remarks of highway related runoff EMC values published in Korea. Moreover, through the results of the correlation analysis between the contaminant concentration and ADT/CA, $R^2$ value of SS showed the highest correlation with 585. Through the correlation equation between ADT/CA and EMC of TSS, when there is 73.7 mg/L of TSS EMC found from a domestic highway, ADT/CA ratio is normally $13car/day{\cdot}m^2$. Therefore, in a case of more than 13 cars passing through a certain area, the area can be considered and present as the point of generation of nonpoint source pollutants. Also, in this study, since it considered a unit area ADT indicated in previous studies, it was determined that it has a high applicability and utilization in generalized units than conventional study which were conventionally done.

An Economic Value for the First Precipitation Event during Changma Period (장마철 첫 강수의 경제적 가치)

  • Seo, Kyong-Hwan;Choi, Jin-Ho
    • Atmosphere
    • /
    • v.32 no.1
    • /
    • pp.61-70
    • /
    • 2022
  • This study evaluates the economic values for the several first precipitation events during Changma period. The selected three years are 2015, 2019, and 2020, where average precipitation amounts across the 58 Korean stations are 12.8, 20.1 and 13.3 mm, respectively. The four categories are used to assess the values including air quality improvement, water resource acquisition/accumulation, drought mitigation, and forest fire prevention/recovery. Economic values for these three years are estimated 50~150 billion won. Among the four factors considered, the effect of air quality improvement is most highly valued, amounting to 70 to 90% of the total economic values. Wet decomposition of air pollution (PM10, NO2, CO, and SO2) is the primary reason. The next valuable element is water resource acquisition, which is estimated 9~15 billion won. Effects of drought mitigation and fire prevention are deemed relatively small. This study is the first to estimate the value of the precipitation events during Changma onset. An analysis for more Changma years will be performed to achieve a more reliable estimate.

Impacts of Contaminated Water Outflow from the Lake Sihwa on the Meiobenthic Animals Living in the Coastal Zones of the Kyonggi Bay (시화호 오염수 방류에 따른 중형저서동물의 군집변동)

  • 김동성;이재학
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.2
    • /
    • pp.279-290
    • /
    • 2000
  • To alleviate the harmful effects from contamination, the Sihwa Lake waters have been regularly fluxed out into the ocean to mix and circulate with the oceanic waters, and then allowed to flow back into the lake. In the present study, eco-environmental impacts by the outflowing contaminated lake waters to the benthic communities of the coastal zones along Kyonggi Bay were examined at three separate areas. A total of 22 groups of meiobenthic animals were commonly found in the subtidal zones of the Bay. All groups of the meiobenthic animals on the 1st and 7th days after the outflow were remarkably reduced in numbers from the selected areas examined, as compared to those observed one day before the outflow. It was also found that the community structure of meiobenthos was changed drastically: At the station near the water gate, for example, where the immediate outflow of the lake water was encountered, the benthic harpacticoids, the group observed to be one of the predominant groups before the outflow, were found to have disappeared completely. For an area that was relatively far away from the water gate, the reduction rate of meiobenthos after the outflow events was slower and more gradual than the nearer sites. An area that is the farthest from the water gate, no reduction in any of the meiobenthos group was observed. The ratio between nematodes/copepods (N/C) was remarkably changed by the outflows at the station near the water gate: One day before the outflow, the ratio was 0.7 while the ratio was 19.0 at the station near the water gate. In contrast, at the stations relatively far from the water gate, the ratio decreased one day after the outflow event, but increasing trends were observed one week later. In the tidal flats, Station 1 exhibited the common observed regional values of the ratio whereas Station 2 showed a very high ratio of 191.3. The results suggested that the contaminated lake water outflows directly effect meiobenthos in a relatively short time period and thus the meiobenthos may be a good indicator animal group for examining the effect of pollution. [Lake Sihwa, contaminat water outflow, meiobenthic animals living]

  • PDF