• Title/Summary/Keyword: Pollution Management

Search Result 1,879, Processing Time 0.031 seconds

Forest Resources Statistics of the State of Virginia in USA (미국 버지니아 주 산림자원통계 고찰)

  • Choi, Jung-Kee;Burkhart, Harold E.
    • Journal of Forest and Environmental Science
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • This study was carried out to compile year 2001 forest resource statistics for the State of Virginia. USA. Virginia has 15.8 million acres (6.4 million ha) of forested 1and, accounting for 62% of the landcover with non-industrial private forest landowners owning 77% of the forested area. Deciduous forests make up 78% of Virginia's forests. Total tree volume is 26.5 billion cubic ft, of which average volume per acre is $1.677ft^3/ac(117m^3/ha)$. The overall annual volume of roundwood output is $543\;million\;ft^3$. Tree growth exceeds removals by $271\;million\;ft^3$ each year for all species statewide. Average net forest land loss in Virginia is 20,000 acre (8,094 ha) per year. In 1999, the forest products industry contributed over $25.4 billion to Virginia's economy while providing over 248,000 jobs. Among forest industries logging contributes to the economy at over $863 million/yr; timber accounts for the greatest amount (28%) of the total market value of Virginia's agricultural crops. Revenue received from stumpage by landowners exceeded $345 million/yr. In their entirety. Virginia's forests provide over $30.5 billion in annual return. including $3 billion for recreation and $1.9 billion for carbon sequestation and pollution control.

  • PDF

The Limnological Survey of Lagoons in the Eastern Coast of Korea (1): Lake Chungcho (동해안 석호의 육수학적 조사(1): 청초호)

  • Lee, Sang-Kyun;Kwon, Sang-Yong;Kim, Dong-Jin;Kim, Bom-Chul;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.3 s.95
    • /
    • pp.206-214
    • /
    • 2001
  • Water quality and Pollution state of Lake Chungcho were evaluated during three years from 1998 to 2000. We surveyed physicochemical parameters, and TSI (trophic state index) was calculated using TP, Chl. a, and SD (secchi disc transparency) data of growing season average. Water samples were collected bimonthly except freezing season. During the study period, total annual precipitation in 1998, 1999 and 2000 year was 1,797,1,722 and 1,345 mm, respectively. Salinity and conductivity were high($29.3{\pm}5.5\;ppt$, and $45,105{\pm}7,585\;{\mu}S/cm$) then other lagoons in the Eastern Coast of Korea. Chemocline was formed by salinity at $0.5{\sim}1.5\;m$ water depth. As a result of this, DO concentration of hypolimnion was below $3.0\;mgO_2/L$. Especially, when intense chemocline was formed, temperature of hypolimnion was higher than epilimnion. Secchi disc transparency, chlorophyll a, and COD were $1.8{\pm}0.3\;m$, $15.7{\pm}20.7\;mg/m^3$, and $3.1{\pm}0.8\;mgO_2/L$, respectively. Most of TN/TP ratios below 20, but concentration of TN and TP was high. Values of TSI ranged between 59 and 77, indicating a eutrophic condition in this system.

  • PDF

Seasonal Variations of Water Environment Factors and Phytoplankton in Nammae Reservoir (남매지의 수환경 요인과 식물플랑크톤의 계절적인 변동)

  • Park, Jung-Won;Lee, Yung-Ok;Kim, Mi-Kyung
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.1 s.102
    • /
    • pp.48-56
    • /
    • 2003
  • This study was evaluated about the seasonal variations of ecosystem in Nammae Reservoir based on the interrelation of physico-chemical characteristics, nutrients, chlorophyll a, b, c and standing crops of phytoplanktons. The amounts of chlorophyll a, b, c were respectively maximum (295 mg/, 9.5mg/l and 48mg/l) at station 1 in June and the standing crop of phytoplanktons was the highest ($1.7{\time}10^5$ cells/1) at stations 3 in July. The range of temperature was $7{\sim}37.4^{\circ}C$. The maxium of pH was $9.9{\sim}10.1$ at all stations in August, the minimum was 7 in September. SS was maximum (308 mg/1) at station 1 in June, while it was minimum (4 mg/l) at the same station in November. The maximal COD and DOC were 33 mg/1 and 16 mg/1 respectively at station 1 in June. As for phytoplanktons, Microcystis aeruginosa, blue-green alga in July${\sim}$August, Scenedesmus acutus, green alga in March${\sim}$May and November${\sim}$January and Cyclotella orientalis, Diatoms in October were dominant species. The amounts of P and Si were generally high in summer, they were low in autumn and winter. Nammae Reservoir assessed by trophic state index was eutrophicated and overtrophicated. These results indicated that Nammae Reservoir was faced with heavy water pollution. As preceding management for the basin of the Reservoir, it will have to be continually studied for an ecosystem reservation.

A study on unmanned watch system using ubiquitous sensor network technology (유비쿼터스 센서 네트워크 기술을 활용한 무인감시체계 연구)

  • Wee, Kyoum-Bok
    • Journal of National Security and Military Science
    • /
    • s.7
    • /
    • pp.271-303
    • /
    • 2009
  • "Ubiquitous sensor network" definition is this-Someone attaches electro-magnetic tag everything which needs communication between man to man, man to material and material to material(Ubiquitous). By using attached every electro-magnetic tag, someone detects it's native information as well as environmental information such as temperature, humidity, pollution and infiltration information(Sensor). someone connects it realtime network and manage generated information(Network). 21st century's war is joint combined operation connecting with ground, sea and air smoothly in digitalized war field, and is systematic war provided realtime information from sensor to shooter. So, it needs dramatic development on watch reconnaissance, command and control, pinpoint strike etc. Ubiquitous computing and network technologies are essential in national defense to operate 21st century style war. It is possible to use many parts such as USN combined smart dust and sensor network to protect friend unit as well as to watch enemy's deep area by unmanned reconnaissance, wearable computer upgrading soldier's operational ability and combat power dramatically, RFID which can be used material management as well as on time support. Especially, unmanned watch system using USN is core part to transit network centric military service and to get national defense efficiency which overcome the dilemma of national defense person resource reducing, and upgrade guard quality level, and improve combat power by normalizing guardian's bio rhythm. According to the test result of sensor network unmanned watch system, it needs more effort and time to stabilize because of low USN technology maturity and using maturity. In the future, USN unmanned watch system project must be decided the application scope such as application area and starting point by evaluating technology maturity and using maturity. And when you decide application scope, you must consider not only short period goal as cost reduction, soldier decrease and guard power upgrade but also long period goal as advanced defense ability strength. You must build basic infra in advance such as light cable network, frequency allocation and power facility etc. First of all, it must get budget guarantee and driving force for USN unmanned watch system project related to defense policy. You must forwarded the USN project assuming posses of operation skill as procedure, system, standard, training in advance. Operational skill posses is come from step by step application strategy such as test phase, introduction phase, spread phase, stabilization phase and also repeated test application taking example project.

  • PDF

The Study on the Analysis of Stormwater Runoff Using RMS (Remote Monitoring System) (원격수위계측기를 이용한 강우유출 분석에 관한 연구)

  • Ham, Kwang-Jun;Kim, Joon-Hyun;Yi, Geon-Ho;Choi, Ji-Yong;Jeong, Ui-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.6
    • /
    • pp.285-294
    • /
    • 2004
  • The purpose of this study is to understand the quantitative change of water resources using RMS(Remote Monitoring System) which takes real time data with high reliability. Also, the characteristic of stormwater runoff was understood by the application of the above system for three streams (Jiam, Yulmun, and Gongji stream) in Chuncheon City. The detailed results of these studies are as follows; RMS(Remote Monitoring System) was constructed by the combination of the automatic water-level meter, which measures water-level of streams at all times, and the wireless communication system sending real-time data from the meter. This system is used to evaluate the stormwater runoff in watersheds and the quantitative changes of streams. It is possible to overcome the limit of field investigations needed, which takes a lot of manpower and time, and it is very efficient to provide the reliable flowrate data. Also, it can be applied to the disaster prevention system for flood because the change of flowrate in stream is monitored at real-time. For 3 streams with different watershed characteristics, correlation equations induced from the relation analysis results. In terms of the relation between water-level and flowrate, flowrate was increased rapidly as the water-level rises in case of small watershed and steep slope. The application results of the proposed system for 3 streams (Jiam, Yulmun, Gongji) in Chuncheon city are as follows; The remote monitoring system was very useful for acquisition of the flow rate in stream that are basic data to understand pollutants runoff in watershed. In case of no-rainy day, the runoff ratio for pollutant loading rate was the highest level in Yulmun stream(BOD:2.3%, TN:20.2%, TP:1.2%). So, it shows the management of pollution source is needed such as rehabilitation of sewer line. Runoff ratio of total phosphorus by rainfall in Gongji watershed was increased about 19 times than no-rainy day, which is estimated as the influence of sewer overflow.

An Effect of Revolutions Per Minute (r.p.m) in the Noise Characteristics (기계소(機械騷) 음(音)과 회전(回轉) 속도(速度))

  • Cha, Bong-Suk
    • Journal of Preventive Medicine and Public Health
    • /
    • v.10 no.1
    • /
    • pp.94-101
    • /
    • 1977
  • Noise pollution, both in the environment and in the workplace, has been recognized as a major health hazard -one that can impair not only a person's hearing but also his physical and mental well-being. As industrialization progresses, the prevalence rate of occupational diseases is increasing, especially hearing loss, which has the highest prevalence rate among the occupational diseases. The major cause of noise is the construction of various large industries without any regulation of noise sources. Therefor, we must establish an enactment to control mechanical noise sources. as soon as possible. For the purpose of controlling the noise source, we must have exact data about such things as the sound level, the frequency of the peak sound and the revolutions per minute (r.p.m.) of the machine (a measure of the power of its motor). This study was undertaken in order to define the noise characteristics, the power of the machine's motor, the change of the sound level and the peak sound as the r.p.m. increases, and the permissible exposure time. The sample size of this study was 74 machines at 11 plants in 6 industries. The results are as follows; 1. The breakdown of the types of mechanical noise noted was : 63.6% continuous normal sound, 26.9% intermittent sound, 4.7% continuous repeating sound and 4.6% impulsive sound. 2. With respect to the type of industry, the overall sound level was the highest in the mechanical industry, with $103.8{\pm}2.8dB(A)$, and lowest in the textile industry, with $89.2{\pm}1.43dB(A)$. 3. With respect to the type of machine, the highest sound level was 124 dB(A) caused by Gauzing(II), in the mechanical industry, and the lowest was 76 dB(A) caused by Attachment (Jup Chack) (I) in the timber industry. 4. The shortest permissible exposure time to Gauzing(II) in the mechanical industry was less than 15 minutes. 5. Among 74 machines, 68.2% of the peak sound was situated in the high frequency range (52.7% at 2 KHz, 4.1% at 4 KHz and 1.4% at 8 KHz). 41.8% of the peak sound was in the middle frequency range (4.1% at 250Hz, 14.8% at 500Hz and 22.9% at 1KHz). 6. If one machine had two motors or more, the peak sound was shifted to the low frequency range. 7. As the r.p.m. increased, the overall and peak sound levels were increased without any change of the frequency of the peak sound. 8. Whenever the machines had the same kind and the same r.p.m., the overall and peak sounds were changed by the physicochemical characteristics of the raw materials and the management.

  • PDF

Environmental Health Strategies in Korea (우리 나라의 환경정책 방향)

  • 조병극
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.2
    • /
    • pp.1-10
    • /
    • 1992
  • Since 1960's along with industrialization and urbanization, economic growth has been . achieved, however, at the same time, environmental condition has been seriously deteriorated. . Currently, volume of wastewater has been increasing at annual rate of 7% in sewage and 20% in industrial wastewater. However, the nation's sewage treatment serves only 33% of the municipal wastewater as of 1991. Major portion of air pollutants comes from combustion of oil and coal which comprise 81% of total energy use and emission gases from motor vehicles increasing at an accelerated rate. It is known that Korea generates the highest amount of waste per capta. Nevertheless, it is not sufficient to reduce the volume of waste by means of resources recovery and recycling. Recognizing the importance of global environmental problems such as ozone layer depletion, global warming and acid rain, international society has been making various efforts since the 1972 Stockholm conference. In particular, it is expected that the Rio conference which has adopted the Rio declaration and Agenda 21 will form a crucial turning point of the emerging new world order after the Cold War confrontation. To cope with such issues as domestic pollution and global environmental problems, the fundamental national policy aims at harmonizing "environmental protection and sustainable development". The Ministry of Environment has recently set up a mid-term comprehensive plan which includes annual targets for environmental protection. According to the government plan, gradual improvement of various environmental conditions and specific measures to achieve them is planned in time frame. Additional sewage treatment plants will be constructed in urban areas with the target to treat 65% of the nation's municipal sewage by 1996. Supply of clean fuels such as LNG will also be expanded starting from large cities as a cleaner substitute energy for coal and oil. In parallel with expansion of LNG, emphasis will be placed on installation of stack monitoring system. Due to the relatively limited land, government's basic policy for solid waste treatment is to develop large scale landfill facilities rather than small sized ones. Thirty three regional areas have been designated for the purpose of waste management. For each of these regions, big scale landfill site is going to be developed. To increase the rate of waste recycling the government is planning to reinforce separate collection system and to provide industries with economic incentives. As a part of meeting the changing situation on global environmental problems after UNCED, and accommodation regulatory measures stipulated in the global environmental conventions and protocols, national policy will try to alter industrial and economic structure so as to mitigate the increasing trends of energy consumption, by encouraging energy conservation and efficiency. In this regard, more attention will be given to the policy on the development of the cleaner technology. Ultimately, these policies and programs will contribute greatly to improving the current state of national public health.

  • PDF

A Study on Removal of Organism and Nitrogen, Phosphorus in Wastewater Treatment Process Using Nitrifier Activated Reactor (질산화균 활성화조를 이용한 하수처리 공정에서의 유기물 및 질소, 인 제거에 관한 연구)

  • Dong, Young-tak;Seo, Dong-whan;Bae, Yu-jin;Park, Ju-seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.727-735
    • /
    • 2007
  • The use of water by cities is increasing owing to industrialization, the concentration of population, and the enhancement of the standard of living. Accordingly, the amount of waste water is also increasing, and the degree of pollution of the water system is rising. In order to solve this problem, it is necessary to remove organisms and suspended particles as well as the products of eutrophication such as nitrates and phosphates. This study developed a high-end treatment engineering solution with maximum efficiency and lower costs by researching and developing a advanced treatment engineering solution with the use of Biosorption. As a result, the study conducted a test with a $50m^3/day$ Pilot Scale Plant by developing treatment engineering so that only the secondary treatment satisfies the standard of water quality and which provided optimal treatment efficiency along with convenient maintenance and management. The removal of organisms, which has to be pursued first for realizing nitrification during the test period, was made in such a way that there would be no oxidation by microorganisms in the reactor while preparing oxygen as an inhibitor for the growth of microorganism in the course of moving toward the primary settling pond. The study introduced microorganisms in the endogeneous respiration stage to perform adhesion, absorption, and filtering by bringing them into contact with the inflowing water with the use of a sludge returning from the secondary settling pond. Also a test was conducted to determine how effective the microorganisms are as an inner source of carbon. The HRT(Hydraulic Retention Time) in the nitrification tank (aerobic tank) could be reduced to two hours or below, and the stable treatment efficiency of the process using the organisms absorbed in the NAR reactor as a source of carbon could be proven. Also, given that the anaerobic condition of the pre-treatment tank becomes basic in the area of phosphate discharge, it was found that there was excellent efficiency for the removal of phosphate when the pre-treatment tank induced the discharge of phosphate and the polishing reactor induced the uptake of phosphate. The removal efficiency was shown to be about 94.4% for $BOD_5$. 90.7% for $COD_{Cr}$ 84.3% for $COD_{Mn}$, 96.0% for SS, 77.3% for TN, and 96.0% for TP.

Estimation and Investigation of the Pollutant Delivery Rate of Sapkyo Reservoir (삽교호의 오염물질 유달률 산정 조사 및 평가연구)

  • Lee, Youngshin;Shin, Sanghee;Lee, Taeho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.4
    • /
    • pp.29-36
    • /
    • 2014
  • The purpose of this study investigates the delivery characteristics according to the load of pollutants by calculating the delivery rate of targeted areas on pollutants in Sapkyo reservoir. The main rivers of Sapkyo reservoir are Namwoncheon, Dogocheon, Sapkyocheon, Muhancheon and Gokgyocheon. The delivery rate and their characteristics of five major rivers during rainfall season are investigated. As th result, biochemical oxygen demand (BOD), total nitrogen (T-N) and total phosphorous (T-P) of total delivery rate are calculated by 0.40, 0.34 and 0.08, respectively. The delivery rate of T-P compares to other water quality is investigated relatively low. Looked at the overall characteristics of the watershed, the delivery rate of T-N and T-P is little change in the rate of the year, too. The delivery rate of T-N is calculated from 0.2 to 0.3 in the dry season, and from 0.31 to 0.39 in a flood, respectively. The delivery rate of T-P is calculated to more than 0.3 in the dry season, and 0.11 in a flood. It is similar values which the average annual delivery rate of T-P is 0.08. Therefore, the measured delivery rate of Sapkyo reservoir can be applicable such as a delivery rate of similar features of the terrain and land use.

Finite Element Analysis of Flow and Water Quality in the New Harbor Site (신항만부지에서의 유동 및 수질에 관한 유한요소해석)

  • Ahn, Do-Kyung;Lee, Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.137-145
    • /
    • 2002
  • Water flow simulations for environmental problems often require local detailed analyses for better understanding and accurate prediction of the fate of pollutant in water bodies. This study deals with the development and application of a two-dimensional flow an dispersion model to the coastal water area to find out possible changes due to the wide port development plan. As far as the spatial discretization is concerned, the finite element method is attractive because of its flexibility and ability to naturally treat complex coastal geometries. The model uses finite element theory and the Galerkin weighted-residual approach as its basis. Developed model is applied to the Busan New harbor Construction site. Results from the model were compared with the measured water level and flows in four stations. The flow pattern by the model shows to be similar to the observed data away from the construction site where the flow is not affected. From the simulation results, it is concluded that the model may be useful for numerous other studies for planning and management purposes, especially flow and pollution dispersion in the coastal water bodies where the flow is so complicated.