• Title/Summary/Keyword: Pollution Emission

Search Result 1,130, Processing Time 0.021 seconds

A Study on the Method of Estimating the Greenhouse Gas Emissions Base on the Classification of Fishing Boat (어선 분류체계별 온실가스 배출량 추정방법에 관한 연구)

  • Kim, Pil Su;Kim, Joung Hwa;Son, Ji Hwan;Kim, Jeong Soo;Choi, Sang Jin;Park, Seong Kyu;Park, Geon Jin
    • Journal of Climate Change Research
    • /
    • v.5 no.4
    • /
    • pp.301-311
    • /
    • 2014
  • In this study, we estimated the amount of fuel used fishing boats of individual based on the results of survey of the activity data such as operations and activities specification of fishing boats in Korea. Based on the classification system of the domestic fishing boat, and to estimate average fuel consumption and the greenhouse gas emissions, showed emission factors per fishing boat. This was suggested to be able to apply the registration data area in the future, and estimates the emissions of greenhouse gases. Based on these results, it tries to provide the basic data that can be used when you want to create a local government measures to reduce scenario in the future.

Application of Fluorescence Excitation Emission Matrices for Diagnosis and Source Identification of Watershed Pollution : A Review (유기물 형광분석법을 활용한 유역 오염 진단 및 오염원 추적: 문헌 연구)

  • Kandaddara Badalge Nipuni Dineesha;Jin Hur;Byung Joon Lee
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.1
    • /
    • pp.87-101
    • /
    • 2023
  • The constituents of a watershed control a wide range of ecosystem processes, such as, carbon sequestration, nutrient retention, and biodiversity preservation. Maintenance of a healthy watershed is advantageous to humans in many direct and indirect ways. Dissolved organic matter fluorescence analysis is one of the most commonly utilized parameters for water quality measurement, pollution source tracking, and determination of the ecological state of a watershed. Throughout the recent decades, the advancement in data processing, instrumentation, and methods has resulted in many improvements in the area of watershed study with fluorescence analysis. The current trend of coupling advanced instrumentations and new comparative parameters, such as, microplastics of different types, antibiotics, and specific bacterial contaminants have been reported in watershed studies. However, conventional methodologies for obtaining fluorescence excitation emission matrices and for calculating the fluorescence and spectral indices are preferred to advanced methods, due to their easiness and simple data collection. This review aims to gain a general understanding of the use of dissolved organic matter fluorescence analysis for diagnosis and source identification of watershed pollutions, by focusing on how the studies have utilized fluorescence analysis to improve existing knowledge and techniques in recent years.

A Study on the Emission Characteristics in 4 Stroke Large Propulsion Diesel Engine (4행정 대형 디젤엔진의 배기 배출특성에 관한 연구)

  • 김현규;전충환;장영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.38-45
    • /
    • 2001
  • Environmental protection on the ocean has been interested and nowadays the International maritime organization(IMO) has advanced on the prevention of air pollution from ships. This study presents the emission characteristics of 4 stroke propulsion diesel engine in E2 cycle (constant speed) and E3 cycle (propeller curved speed). Also the effects of important operating parameters in terms of intake air pressure and temperature, and maximum combustion pressure are described on the specific emissions. Emissions measurement and calculation are processed according to IMO technical code. The results show that NOx emission level in E3 cycle is higher than E2 cycle due to lower engine speed and lower maximum combustion pressure by retarding fuel injection timing. Intake air temperature has strong influence on NOx emission production. And CO, HC emissions are not affected by maximum combustion pressure and intake air pressure and temperature.

  • PDF

A Study on the Exhaust Emission of LPG and Gasoline Vehicle (LPG와 가솔린 연료의 차량 배출가스 특성에 대한 비교 연구)

  • 정성환;한상명
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.23-28
    • /
    • 2002
  • As the interest on the air pollution is gradually rising up at home and abroad, automotive industries have been working on the exhaust emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative aftertreatment systems, and using clean fuels. Methanol, ethanol, LNG, LPG, H2, reformulated gasoline are generally recognized as the clean fuel. Since the low price policy of government on LPG has expanded its vehicle market recently, there is concern of the exhaust emission of LPG vehicle. In this paper, we studied the value of LPG fuel as a clean fuel by comparing the results of the exhaust emission from LPG and Gasoline fueled vehicles, and discussed its limitation of LPG vehicle with mixer type as a fuel supply system. FTIR was used to understand the difference of exhaust emission components of LPG and Gasoline fueled vehicles.

Multivariate Sequential Rectifying Inspection with Applicability to the Motor Vehicle Emission Certified Test (자동차 배출가스보증시험에 다변수 축차검사의 적용에 관한 연구)

  • Jo, Jae-Rip
    • Journal of Korean Society for Quality Management
    • /
    • v.19 no.2
    • /
    • pp.63-77
    • /
    • 1991
  • Currently the problem of air pollution caused by the motor vehicle emission is one of the most serious problems to be solved. Thus we needed the inspection method and technical innovation constraining the motor vehicle emission. In order to establish the more reasonable certified test, the multivariate sequential rectifying inspection plan designed in this paper has been applied to the domestic vehicles by analyzing the statistic characteristics of the emission distribution. This inspection method is designed to satisfy the evaluation measure constraining domestic vehicle emission, and it serves the defect rectifying system and performance certification of catalytic converts. As the prior parameter for the domestic vehicles, we used the data for the catalytic converts which passed the certified test excuted by the EPK. For the case of engine test, we used those data which passed the certified test of domestic vehicles. The multivariate sequential rectifying inspection plan of the vector parameter is able to minimize the average sample number and increase the pass probability of operating characteristic curve.

  • PDF

Estimation of emission rate for railroad rolling stock sources in Busan Metropolitan City (부산광역시에서 철도차량 배출원에 의한 오염물질 배출량 산정)

  • 이화운;김유근;김희만;박종길;장난심;이희령
    • Journal of Environmental Science International
    • /
    • v.10 no.6
    • /
    • pp.407-415
    • /
    • 2001
  • A case of air pollution study of estimation of emission rate for source to railroad rolling stock and emissive character about is unusual. Recent emission rate of railroad rolling stock was estimated with emission factor of EPA in three region(Seoul, Incheon, and Gyeonggido). But this EPA factor could be incorrect because Korea and America have a different railroad environment in the variety of fuel and character of railroad rolling stock In this study, emission rate of each line, car and region(district) with omission factor of Korean case(National Railroad Administration, 1997) was estimated. In Busan Metropolitan City, railroad rolling stocks were divided accoding to, each line, car and service. Particularly, the Idle fuel rate omitted in the preceding study was included in calculation fuel rate. Total emission rate of Busan Metropolitan City was 887.41 t/year Each emission rates of Kyeongbu line, Donghaenambu line, Gaya line, Uam line, Bujeon line, and idle was 489.15t, 196.46t, 33.94t, 12.66t, 6.47t, and 48.75t, respectively.

  • PDF

Strategies for reducing noxious gas emissions in pig production: a comprehensive review on the role of feed additives

  • Md Mortuza Hossain;Sung Bo Cho;In Ho Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.2
    • /
    • pp.237-250
    • /
    • 2024
  • The emission of noxious gases is a significant problem in pig production, as it can lead to poor production, welfare concerns, and environmental pollution. The noxious gases are the gasses emitted from the pig manure that contribute to air pollution. The increased concentration of various harmful gasses can pose health risks to both animals and humans. The major gases produced in the pig farm include methane, hydrogen sulfide, carbon dioxide, ammonia, sulfur dioxide and volatile fatty acids, which are mainly derived from the fermentation of undigested or poorly digested nutrients. Nowadays research has focused on more holistic approaches to obtain a healthy farm environment that helps animal production. The use of probiotics, prebiotics, dietary enzymes, and medicinal plants in animal diets has been explored as a means of reducing harmful gas emissions. This review paper focuses on the harmful gas emissions from pig farm, the mechanisms of gas production, and strategies for reducing these emissions. Additionally, various methods for reducing gas in pigs, including probiotic interventions; prebiotic interventions, dietary enzymes supplementation, and use of medicinal plants and organic acids are discussed. Overall, this paper provides a comprehensive review of the current state of knowledge on reducing noxious gas in pigs and offers valuable insights for pig producers, nutritionists, and researchers working in this area.

Japanese Measurement on Fine Particles(PM2.5) Emission Pollution and Cooperation of Korea -China-Japan to Reduce Fine Particles Pollution- (일본의 미세먼지 대책과 미세먼지 저감을 위한 한중일 협력)

  • Lee, Soocheol
    • Environmental and Resource Economics Review
    • /
    • v.26 no.1
    • /
    • pp.57-83
    • /
    • 2017
  • The Japanese government's attempts to reduce fine particles (PM2.5) emission pollution in Japan have been largely ineffective. This is because PM2.5 in Japan originated from various sources including around half from oversea countries such as China. This prompts the Japanese government to start a new initiative to reduce PM2.5 at its origin by transferring local knowledge on air pollution reduction measures and technologies to China and working closely with the Chinese government. To promote further reduction in PM2.5, bilateral corporation between Japan and China should be extended to include Korea. It is recommended that an international convention should be in place to deal with transboundary air pollutants in East Asia. A successful East Asia corporation to reduce PM2.5 will not only contribute to clean air but also to future sustainable low carbon society in this region.

Current Status and Prospects of Eco-friendly Disposal Processes for Waste Explosives (폐화약류의 친환경적 폐기처리 공정의 최근 현황 및 전망)

  • Tae Ho Kim;Deok Yeol Kim;Jong Min Kim
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Waste explosives such as useless ammunition discharged from the military and coproduced useless explosives during the manufacturers production process have been continuously produced. These are difficult to dispose with normal waste treatment facilities due to the dangers of fire and explosion. An open burning or an open detonation at military designated disposal facilities is a classical treatment method for the dangerous explosives. The classical method raises various environmental problems by the emission of hazardous materials. An air pollution by the emission of hazardous gases such as SOx and NOx, soil and water contaminations by the accumulation of non-biodegradable heavy metals, are representative pollution examples. To overcome these problems, various processes for eco-friendly waste treatment methods have been developed, and some processes have already been operated in some countries. In the current report, various eco-friendly disposal processes for waste explosives or harmful materials, and their advantages and disadvantages are documented to suggest future development directions for reducing the hazardous substances by the treatment processes.