• Title/Summary/Keyword: Pollutants

Search Result 4,213, Processing Time 0.057 seconds

An Evaluation of Solid Removal Efficiency in Coagulation System for Treating Combined Sewer Overflows by Return Sludge (CSOs처리를 위한 응집침전시스템에서 슬러지 반송에 의한 고형물 처리효율평가)

  • Ha, Sung-Ryong;Lee, Seung-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.171-178
    • /
    • 2013
  • In this study, the sludge that occurs in the initial operation of coagulation system developed for the treatment of CSOs were returned to the flocculation reactor. The purposes of this study were to analyze the Characteristics of flocs that are generated through the recycling sludge and settling characteristics of sludge, and to evaluate the possibility that high concentrations of particulate matter in the initial inflow of CSOs could be used as an weighted coagulant additive. As a result, the concentration of treated CSOs pollutants at the beginning of the CSOs influent with a large amount of particulate matter over 20 ${\mu}m$ was low, after gradually increasing the concentrations of them. The flocs generated from the sludge return were similar in size compared to flocs generated through injection of micro sands, and settling velocity in case of return sludge injection was decreased from 55.1 cm/min to 21.5 cm/min. SVI value of the sludge accumulated at the bottom of the sedimentation tank was 72, and settled sludge volume decreased rapidly due to the consolidation of sludge to the time it takes to 10 minutes. these mean that sludge used for recycling has good settling characteristic. A condition of returned sludge which is 0.1% return of 0.3% extraction was formed in the balance of settlement and extraction. In this case, This condition was to be adequate to maintain the proper concentration such as 100~200 mg/L of TS and 50~100 mg/L of VS in the flocculation reactor. The usage of the return sludge containing particulate matters of CSOs as an weighted coagulant additive was able to secure a stable treated water quality despite the change of influent water quality dynamically. Furthermore, it can be expected to reduce the alum dosage along with the sludge production.

Selection of Superior Poplar and Willow Clones in Growth Performance and Adaptation Abilities at Sudokwon Landfill Site (수도권매립지에서 생장과 적응력이 우수한 포플러류 및 버드나무 클론 선발)

  • Koo, Yeong-Bon;Woo, Kwan-Soo;Yeo, Jin-Kie;Kim, Yeong-Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.6
    • /
    • pp.743-750
    • /
    • 2006
  • Poplars and willow were planted to identify suitable species and varieties for landfill reclamation at the Sudokwon Landfill Site in 1997. Survival rate, growth performance, vitality, visible foliar injury by pollutants, fungi, and leaf insects, and stem borer damage have been investigated for 10 clones of 4 poplar species and 2 clones of one willow species from 1997 to 2005. The average survival rates of poplar and willow clones were drastically decreased from 90% in 1997 to 53% in 2005. Among poplar species, Populus alba ${\times}$ P. glandulosa showed the highest mean survival rate of 66%, while Populus koreana ${\times}$ P. nigra var. italica and Populus euramericana were the lowest of 41%, respectively in 2005. Clivus, which is one of the clones from Populus alba ${\times}$ P. glandulosa, showed the highest survival rate of 73%. For mean height, Ec028 clone(P. euramericana) showed the highest of $11.2m{\pm}2.1m$ and followed by Clivus of $11.0m{\pm}2.0m$. Clone 131-27(Salix alba) was the lowest of $7.8m{\pm}1.6m$. Vitality, defoliation, visible foliar damage, and stem borer damage were significantly different among clones. Most of Populus alba ${\times}$ P. glandulosa and Salix alba clones seemed to have strong vitality and to be tolerant to various stresses at the site. However, Populus nigra ${\times}$ P. maximowiczii was sensitive to the stress. We have selected 5 clones in total: Clivus as the best clone for waste landfill reclamation, and additionally two Salix clones 131-25, 131-27 and two clones of Populus alba ${\times}$ P. glandulosa (72-9, 72-16) have been selected. These five clones could be supplied for planting at sites having an environment similar to the Sudokwon Landfill Site.

Deposition of Atmospheric Pollutants in Forest Ecosystems and Changes in Soil Chemical Properties (대기오염물질(大氣汚染物質)의 산림생태계내(山林生態系內) 유입(流入)과 토양(土壤)의 화학적(化學的) 특성(特性) 변화(變化))

  • Kim, Dong Yeob;Ryu, Jung Hwan;Chae, Ji Seok;Cha, Soon Hyung
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.84-95
    • /
    • 1996
  • Environmental pollution has recently been progressed in the metropolitan and industrial areas of Korea and concerns have been evolved against the chronic effects of the pollution on natural ecosystem. This study was carried out to investigate the environmental pollution impacts on ion input into forest ecosystems and soil environmental changes. Study plots were established at Seoul, Ulsan, Yeochon, and Seosan for pollution sites and at Pyungchang for a non-pollution site. Atmospheric deposition was measured with rain, throughfall, and stem flow samples collected in the forest areas. Soil chemical properties were investigated to compare the pollution impacts on the sites. Precipitation acidity in the metropolitan and industrial areas ranged from pH 4.5 to 5.5, showing the levels lower than pH 5.8 of mountain area. Ion concentrations in the precipitation had increased significantly while passing the crown layer in the metropolitan and industrial areas, showing the increase by 4 times at the maximum. Total ion input in the metropolitan and industrial areas was greater than that in mountain area by approximately 2-3 times. Soil acidification caused by acidic ion input seemed to be greatest at Seoul, showing pH 1 decrease compared to that of Pyungchang. Soil canon contents were relatively high in the metropolitan and industrial areas. Although the canon leaching loss was not apparent, soil acidification process seemed to be continued by acidic ion input. Environmental pollution in the metropolitan and industrial areas exerted changes in ion input into the forest ecosystems and soil conditions. The chronic effects of environmental pollution should be monitored and investigated further to explain the processes of ecosystem change and the impacts on plant growth.

  • PDF

Improvements in the Marine Environmental Survey on Impact of Seawater Qualities and Ecosystems due to Marine Sand Mining (바다모래 채취 시 해수 수질 및 생태계 영향에 대한 해양환경조사 개선 방안)

  • Kim, Yeong-Tae;Kim, Gui-Young;Jeon, Kyeong-Am;Eom, Ki-Hyuk;Kim, In-Chul;Choi, Bo-Ram;Kim, Hee-Jung;Kim, Jin-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.143-156
    • /
    • 2014
  • We reviewed investigation status on turbidity plume in the statement of marine environmental survey(2008 to 2012) associated with marine sand extraction projects. The survey statement from seven marine sand extraction sites (extraction area of Southern EEZ, extraction area of Western EEZ, relocation zone in the Western EEZ, sea area under jurisdiction of Taean-gun, sea area under jurisdiction of Ansan City, and two discrete sea areas under jurisdiction of Ongjin-gun) in the nearshore and offshore of Korea showed that in situ observations were carried out for the dispersion and transport of suspended sediments on two areas (One is a extraction area in the EEZs, the other is an area of coastal sites). However, sampling station and range have not been selected considering physical, geographical factors (tide, wave, stratification, water depth, etc.) and weather conditions (wind direction and velocity, fetch, duration, etc). Especially turbidity plumes originating from three sources, which include suspended sediments in overflow(or overspill) discharged from spillways and reject chutes of dredging vessel, and resuspended sediments from draghead at the seabed, may be transported to a far greater distance outside the boundary of the extraction site and have undesirable impacts on the marine environment and ecosystem. We address that behaviour of environmental pollutants such as suspended solids, nutrients, and metals should be extensively monitored and diagnosed during the dispersion and transport of the plume. Finally we suggest the necessity to supplement the current system of the sea area utilization consultation and establish the combined guidelines on marine sand extraction to collect basic data, to monitor cumulative effects, and to minimize environmental damages incurred by the aftermath of sand extraction.

Isolation and Characteristics of a Phenol-degrading Bacterium, Rhodococcus pyridinovorans P21 (페놀분해세균 Rhodococcus pyridinovorans P21의 분리 및 페놀분해 특성)

  • Cho, Kwang-Sik;Lee, Sang-Mee;Shin, Myung-Jae;Park, Soo-Yun;Lee, Ye-Ram;Jang, Eun-Young;Son, Hong-Joo
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.988-994
    • /
    • 2014
  • The effluents of chemical and petroleum industries often contain non-biodegradable aromatic compounds, with phenol being one of the major organic pollutants present among a wide variety of highly toxic organic chemicals. Phenol is toxic upon ingestion, contact, or inhalation, and it is lethal to fish even at concentrations as low as 0.005 ppm. Phenol biodegradation has been studied in detail using bacterial strains. However, these microorganisms suffer from substrate inhibition at high concentrations of phenol, whereby growth is inhibited. A phenol-degrading bacterium, P21, was isolated from oil-contaminated soil. The phenotypic characteristics and a phylogenetic analysis indicated the close relationship of strain P21 to Rhodococcus pyridinovorans. Phenol biodegradation by strain P21 was studied under shaking condition. The optimal conditions for phenol biodegradation by strain P21 were 0.09% $KNO_3$, 0.1% $K_2HPO_4$, 0.3% $NaH_2PO_4$, 0.015% $MgSO_4{\cdot}7H_2O$, 0.001% $FeSO_4{\cdot}7H_2O$, initial pH 9, and $20-30^{\circ}C$, respectively. When 1,000 ppm of phenol was added to the optimal medium, the strain P21 completely degraded it within two days. Rhodococcus pyridinovorans P21 could grow in up to 1,500 ppm of phenol as the sole carbon source in a batch culture, but it could not grow in a medium containing above 2,000 ppm. Moreover, strain P21 could utilize toxic compounds, such as toluene, xylene, and hexane, as a sole carbon source. However, no growth was detected on chloroform.

Ecological Importance of Water Budget and Synergistic Effects of Water Stress of Plants due to Air Pollution and Soil Acidification in Korea (한국에서 수분수지의 생태적 중요성과 대기오염 및 토양 산성화로 인한 식물의 수분스트레스 증대 효과)

  • 이창석;이안나
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.143-150
    • /
    • 2003
  • Korea has plentiful precipitation but rainfall events concentrate on several months of rainy season in her weather condition. Korea, therefore, experiences drought for a given period every year. Moreover the soil has usually low water holding capacity, as it is composed coarse particles originated from the granite. Response of several oaks and the Korean red pine (Pinus densiflora) on water stress showed that water budget was significant factor determining vegetation distribution. In addition, dehydration level due to cold resistance mechanism of several evergreen plants during the winter season was closely related to their distribution in natural condition. Experimental result under water stress showed that the Korean red pine was very tolerant to desiccation but the seedlings showed high mortality during the dry season. The mortality tended to proportionate to soil moisture content of each site. A comparison between soil moisture content during June when it is severe dry season and moisture content of the culture soil when the pine seedlings reached the permanent wilting point due to water withheld proved that high mortality during the dry season was due to water deficit. Water potential of sample plants measured during the exposure experiment to the air pollutant showed a probability that water related factors would dominate the occurrence of visible damage and the tolerance level of sample plants. In both field survey and laboratory experiment, plants exposed to air pollution showed more rapid transpiration than those grown in the unpolluted condition. The result would due to injury of leaf surface by air pollutants. Aluminum (Al/sup 3+/) increased in the acid soil not only inhibits root growth but also leads to abnormal distribution of root system and thereby caused water stress. The water stresses due to air pollution and soil acidification showed a possibility that they play dominating roles in inducing forest decline additionally to the existing water deficit due to weather and soil conditions in Korea. Sludge, which can contribute to improve field capacity, as it is almost composed of organic matter, showed an effect ameliorating the retarded growth of plant in the acidified soil. The effect was not less than that of dolomite known in widely as such a soil ameliorator. Litter extract contributed also to mitigate the water stress due to toxic Al/sup 3+/. We prepared a model showing the potential interaction of multiple stresses, which can cause forest decline in Korea by synthesizing those results. Furthermore, we suggested restoration plans, which can mitigate such forest decline in terms of soil amelioration and vegetation restoration.

Influence of Sulfur and Fluorine Compounds on the Growth and Yield of Rice Plants;I. Growth Retardation and Yield Reduction under Various Stressed Conditions in the Field (황화물(黃化物) 및 불화물(弗化物)이 수도생육(水稻生育)과 수량(收量)에 미치는 영향(影響);I. 오염지역(汚染地域)에서의 생육장해(生育障害) 및 수량감소(收量減少))

  • Park, Wan-Cheol;Shin, Eung-Bai;Kim, Kwang-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.6 no.2
    • /
    • pp.53-65
    • /
    • 1987
  • The study was performed to investigate the effect of gaseous emissions of sulfur dioxide and hydrogen fluoride on the growth of rice plants under stressed field conditions consisting of 88 industrial plants operating with 285 smoke stacks emitting pollutants. As for the relationship between yields and yield components it is believed that the panicles per hill is the single most important component affecting the rate of yield of the rice plant. Based on the standard partial regression coefficient analysis, panicles per hill has the largest contribution to yield and the average contribution of 54%. Other components such as spikelets per panicle, percent fertility and 1000 grain weight are also contributing factors to yield, although far less so. Fluorine content in the leaf appear to have more negative effect on panicles per hill, percent fertility and subsequent overall yield than does sulfur content in the leaf. It is constantly observed and interesting to note that fluorine and sulfur content in the leaf appears to have no effect on spikelets per panicle and 1000 grain weight. Reduction in yield seems to be affected mainly by panicles per hill which are, in turn, affected more by fluorine content in the leaf as demonstrated by the standard partial coefficient analysis. Regarding the prediction sum of the square of the regression equation, the lowest value was found when nine variables were used for the analysis. The variables taken into consideration were the monthly sulfur and fluorine content in the leaf as well as the monthly percent of leaf damage during the months of June, July and August. A significant correlation is found between the actual and predicted yields by the regression equations selected as a result of a prediction sum of the square analysis.

  • PDF

Decomposition Characteristics of Non-Degradable Liquid Waste under High Temperature and High Pressure Conditions (고온 고압 조건에서의 난분해성 액상폐기물 분해 특성)

  • Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1572-1578
    • /
    • 2007
  • The specified wastes consist of waste acid, waste alkali, waste oil, waste organic solvent, waste resin, dust, sludge, infectious waste, and others. Among these specified wastes, a great portion is liquid phase wastes. The purpose of this study is to develop the high temperature and high pressure (HTHP) treatment system for decomposition of the liquid phase specified waste (LPSW). For this, we analyzed the physical and chemical properties of the LPSW such as density, proximate analysis, ultimate analysis, heating values, and designed 0.3 ton/day HTHP treatment system. The LPSW tested in this experiment were prepared by adding TCE(trichloroethylene) and toluene to liquid phase waste which was brought into the commercial waste treatment company. The average density of waste oil (25 samples), waste resin (5 samples), and waste solvent (12 samples) was 0.99 g/mL, 0.91 g/mL, and 0.93 g/mL, respectively. And the average lower heating value of waste oil, waste resin, and waste solvent was 8,294 kcal/kg, 5,809 kcal/kg, and 7,462 kcal/kg, respectively. The DRE (Destruction & Removal Efficiency) of TCE and toluene were 99.95% and 99.73% at atmospheric pressure conditions and that were 99.99% and 99.82% at pressurized conditions, respectively. These results showed that TCE/toluene mixtures were properly decomposed over about 99.73% of DRE by the HTHP treatment system and pressurized conditions were more effective to destroy those pollutants than atmospheric pressure conditions. Also these systems could be directly applied to industries which try to treat the liquid phase specified waste within the regulation limit.

  • PDF

Effect of Priming, Temperature and Light Quality on Germination of Pokeweed(Phytolacca americana) Seed (Priming, 온도 및 광질이 미국자리공 종자의 발아에 미치는 영향)

  • 강진호;류영섭;김동일;이외숙;김성희
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.2
    • /
    • pp.153-159
    • /
    • 1997
  • Pokeweed, a polycarpic plant, has been used as herbage medicine, vegetable or dye. It, however, is known as an aggressive plant in the vicinity of the industrial area evolving air pollutants. The experiment was done to determine the effect of priming using nitrates, germination temperature and light quality on germination of its seed to get information on the optimum germination process as well as its establishment. The daily percent germination was measured to 12 days after sowing since its seeds were treated by two different nitrates [KNO$_3$, Ca(NO$_3$)$_2$]. their different concentrations (0, 50, 150, 300mM), then treatment duration (1, 3, 6 days), different germination temperature (day /night; 30/30, 30/20, 20/30, 20/2$0^{\circ}C$) and light quality (red, white, dark) before or during germination. The percent germination was greater in the KNO$_3$ treatment than in the Ca(NO$_3$)$_2$ but in the priming treatment with KNO$_3$ in comparison with no-priming. In the priming treatment with KNO$_3$, the percent germination was increased with its increased concentration to 150mM although decreased with delayed duration to 6 days. Regardless of light quality, the greater percent germination was shown in the order of 2$0^{\circ}C$ constant and 20/3$0^{\circ}C$ alternative, 3$0^{\circ}C$ constant, 30/2$0^{\circ}C$ alternative temperature. The germination was less in the dark during germination than in the illumination in which the red light had greater percent germination compared to white light. The seeds primed with KNO$_3$ were germinated under the alternative temperature even in the dark condition.

  • PDF

A Study on the Improvement of Treatment Efficiency for Nitrogen and Phosphorus by Improved Sewage Treatment Process in Constructed Wetland by Natural Purification Method (자연정화공법에 의한 인공습지 하수처리장에서 하수처리 공정개선에 따른 질소 및 인의 처리효율 향상 방안)

  • Seo, Dong-Cheol;Park, Woo-Young;Lim, Jong-Sir;Park, Chan-Hoon;Lee, Hong-Jae;Kim, Hong-Chul;Lee, Sang-Won;Lee, Do-Jin;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.1
    • /
    • pp.27-34
    • /
    • 2008
  • To effectively treat the domestic sewage that was produced on a small-scale in farming and fishing village in order to encourage an ecologically friendly environment, a small-scale sewage treatment apparatus using natural purification methods that consisted of an aerobic and an anaerobic plots were constructed. The efficiency of sewage treatment according to the sewage loading was investigated to obtain the optimum sewage loading in small-scale sewage treatment apparatus. Removal rate of pollutants according to the sewage loading were in the order of $150\;Lm^{-2}day^{-1}{\fallingdotseq}300\;Lm^{-2}day^{-1}>600\;Lm^{-2}day^{-1}$. Therefore, the optimum sewage loading was 300 L m-2 day-1. Under the optimum sewage loading, removal rate of BOD, $COD_{Mn}$, turbidity, T-N and T-P were 99, 94, 99, 49 and 89%, respectively. However, to satisfy the water quality standard in effluent in small-sclae sewage treatment apparatus for domestic sewage treatment, the low removal efficiency of T-N and T-P must be improved. So to improve the removal rate of T-N and T-P, the efficiency of sewage treatment according to the improved sewage treatment process such as, re-treatment at aerobic plot, anaerobic condition of aerobic plot, changing the filter media sizes and the depths in anaerobic plot, and also addition of oyster shells to filter media at anaerobic plot were investigated. In case of 150 cm depth in anaerobic plot with filter medium A (effectivity particle size 1.50 mm) and addition of oyster shells to filter media at anaerobic plot, removal rate of T-N and T-P in both plots were increased by 10 and 3%, and 14 and 7% in comparison with 100 cm depth in anaerobic plot with filter medium B(effectivity particle size 0.95 mm), respectively. The optimum improved sewage treatment process in small-scale sewage treatment apparatus were 150 cm depth in anaerobic plot with filter medium A and addition of oyster shells to filter media at anaerobic plot.