• Title/Summary/Keyword: Pollutant load

Search Result 480, Processing Time 0.024 seconds

Dredging Bottom Sediments of Seoha Weir at the Downstream of Kyongan Stream can be Used as a Feasible Pollutant Load Reduction Option in the Total Pollutant Load Management System of Kwangju City? (경안천 서하보 수저퇴적물 준설이 경기도 광주시 수질오염총량관리에 있어 추가적인 부하량 삭감수단으로써 타당한가?)

  • Yu, Seung-Hoon;Lee, Bum-Yeon;Lee, Kang-Hyun;Park, Shin Jung;Lee, Chang-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.19-29
    • /
    • 2011
  • In order to assess the influences of bottom sediment on water quality, following measurement were made. (1) Estimations of pollutant loads from the bottom sediment based on mass balance concept, (2) measurements of pollutant concentrations in the sediment to assess the pollution level and influence potential, (3) in situ and laboratory measurements of Sediment Oxygen Demants (SOD) and pollutant load (sediment release) from bottom sediment. Analyses of inflow and outflow loadings using simple mass balance show that there are some variations found according to the pollutants. However, there is no consistent evidence that the sediment can be a source of pollutants. Pollutant concentrations in the sediment range 16~724.8 mg/kg (COD), 1.68 ~12.64 mg/kg (T-P), 5.6~76.8 mg/kg (T-N), 0.32~21.6 mg/kg ($NH_3$-N), 0.092~0.544 mg/kg ($NO_2$-N), 4.8~18.4 mg/kg ($NO_3$-N), and 1.59~11.23 mg/kg ($PO_4$-P). Measured SOD ranges $0.190{\sim}0.802g{\cdot}m^{-2}{\cdot}d^{-1}$ and measured release rate ranges $-1618.42{\sim}10mg/m^2{\cdot}d$(COD), $-12{\sim}16mg/m^2{\cdot}d$(T-P), $-197.37{\sim}140mg/m^2{\cdot}d$(T-N), $0.4{\sim}74.32mg/m^2{\cdot}d$($NH_3$-N), $-2.04{\sim}0.8mg/m^2{\cdot}d$ ($NO_2$-N), $-70{\sim}40mg/m^2{\cdot}d$ ($NO_3$-N), and $-26.11{\sim}28.55mg/m^2{\cdot}d$($PO_4$-P). All study results indicate that bottom sediments in the Seoha weir show only limited effects on the water quality. It implies that sediment dredging is not an effective option or management measure to reduce pollutant loading.

A Study on the Total Pollutant Load Management of Masan Bay Using GIS Technique (GIS 기법을 이용한 마산만 오염총량관리에 관한 연구)

  • Cho, Bo-Hyun;Yang, Keum-Chul
    • Journal of Wetlands Research
    • /
    • v.14 no.1
    • /
    • pp.89-99
    • /
    • 2012
  • This study aims to develop the Masan bay special management system of the point and nonpoint sources of pollution using GIS as part of the Integrated Management System of the Masan Bay Special Management Area and utilize Total Pollution Loads Management System in Masan Bay more systematically and scientifically. The result of the pollution sources management at the Masan bay in conjunction with GIS was made possible the comparison of the source of pollution and the pollutant load among each administration area. It also developed Arc-GIS watershed management program which enables to estimate the population for discharge facilities, the water use of domestic population and commercial population, and pollutant load and discharge load of COD, TN and TP by the administration areas, years, and usages. In addition, this study anticipated minimizing temporal, economical efforts in utilizing large amounts of property and space utilization data and expediting the decision making process of policies in relation to the systematic and effective management system of pollutant loads at the Masan bay area. Further studies are required to plan the systematic management of the point and nonpoint sources of pollution and complement the watershed management system using GIS program for pollutant load which enables to predict the current and future state of point and nonpoint sources.

Analysis of Pollutants Discharge due to the Change of Impervious Land in Urban Area Using Watershed Model (유역모형을 이용한 도시지역의 불투수면 변화에 따른 오염물질 유출 해석)

  • Gong, Seok Ho;Kim, Tae Geun
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.1
    • /
    • pp.73-82
    • /
    • 2018
  • The purpose of this study is the evaluation of the impact of increase in impervious areas due to urbanization on the pollutant discharge using the HSPF model at Musim watershed. Model calibration and validation were performed based on the observed data 2015 and 2014, all simulation items have been successfully simulated such as flow, BOD, and TP. The land cover map used in the model reflected on the land use status of the Musim watershed in 2015 and the application of the development areas and locations. As a result of simulation, during rainfall daily pollutant load with the increased impervious land increased more than that before the development. However, the pollutant load decreased during the non-rainfall time. Annual pollutant load in rainfall time was significantly higher than that in non-rainfall time, BOD and TP increased. The simulation of non-point source pollutant load was applied under two assumptions, such as the increased area of impervious land and the non-change number of point source load before and after development. As the result of a simulation, the non-point source pollutant load after development was bigger than those before development. It was necessary to take measures to control non-point source pollution at the consideration status of development.

Modeling the Effects of Low Impact Development on Runoff and Pollutant Loads from an Apartment Complex

  • Jeon, Ji-Hong;Lim, Kyoung-Jae;Choi, Dong-Hyuk;Kim, Tae-Dong
    • Environmental Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.167-172
    • /
    • 2010
  • The effects of low impact development (LID) techniques, such as green roofs and porous pavements, on the runoff and pollutant load from an apartment complex were simulated using the Site Evaluation Tool (SET). The study site was the Olympic Village, a preexisting apartment complex in Seoul, South Korea, which has a high percentage of impervious surfaces (approximately 72% of the total area). Using the SET, the effects of replacing parking lots, sidewalks and driveways (37.5% of the total area) having porous pavements and rooftops (14.5% of the total area) with green roofs were simulated. The simulation results indicated that LID techniques reduced the surface runoff, and peak flow and pollutant load, and increased the evapotranspiration and soil infiltration of precipitation. Per unit area, the green roofs were better than the porous pavements at reducing the surface runoff and pollutant loads, while the porous pavements were better than green roofs at enhancing the infiltration to soil. This study showed that LID methods can be useful for urban stormwater management and that the SET is a useful tool for evaluating the effects of LID on urban hydrology and pollutant loads from various land covers.

Pollutant Budget Change Due to Construction of Wastewater Treatment Plant in Masan Bay (하수처리장 건설에 의한 마산만의 오염물질 수지변화)

  • 조홍연;채장원;정신택
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.3
    • /
    • pp.149-155
    • /
    • 2000
  • The effects of the WfP construction are analysed quantitatively based on the pollutant budget change in Masan Bay. The reduction effects of the watershed pollutant loads are clearly shown, while the positive influence of the water quality (WQ) are not substantial because the pollutant load also increased continusly after WTP construction. The reduction effects of the COD, 55, TN and TP parameters are 17.6%, 68.9%,66.7%, and 38%, respectively in Masan Bay (zone I). The environmental condition of the northern part of Chinhae Bay (zone ll), however, is slowly degraded because of the direct and indirect effects - effluents discharge from the WTP and pollutants release from the sediment, respectively.

  • PDF

Application of Water Quality Management System of Freshwater Lake

  • Kim, Sun-Joo;Kim, Phil-Shik;Lee, Joo-Young
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.7
    • /
    • pp.38-48
    • /
    • 2003
  • Lake water quality assessment information is useful to anyone involved in lake management, from lake owners to lake associations. It provides lake water quality criteria, which can improve the ways how to manage out lake resources and how to measure current conditions. It also provides a knowledge base so that the lakes can be protected and restored. Here, the Freshwater Lake Water Quality Management System(FLAQUM) was developed. The results of FLAQUM application by scenario proved that pollutant load at rainfall by the nonpoint sources was much more than normal times at rainfall. From the result of Scenario I (pollutant source increase case), the concentrations of Boryeong freshwater lake were BOD 9.43mg/L, T-N 4.53 mg/L and T-P 0.21 mg/L, respectively, and those values exceed the standard of agricultural water. And in case of Scenario I and II(the present case) excluding Scenario III (pollutant source decrease case), all of T-N and T-P are either mesotrophication or eutrophication, on the other hand when 60% of pollution source is removed, the concentrations of Scenario III were BOD 3.21 mg/L, T-N 0.95 mg/L, T-P 0.11 mg/L, respectively, and which satisfies the standard of agricultural water quality.

Characteristics of Pollutant Loads and Water Quality in Kwangyang Bay, Korea

  • Lee Dae-In;Park Chung-Kil;Cho Hyeon-Seo
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.3
    • /
    • pp.149-154
    • /
    • 2003
  • The characteristics of pollutant loads from the various sources and seawater quality in Kwangyang Bay were evaluated. Total flow rate was estimated to be $10,868,066.8 m^3/day$ with a flow rate of R2l (the Seomjin River) as the highest one. Total COD, TN and TP loads of the input rivers and the ditches were about 27,591.8, 25,029.6 and 586.4 kg/day, respectively. Wastewater discharging loads was the greatest contributors to pollutant loads in the inner part of Kwangyang Bay. COD values in the inner part of the bay was over 3.0 mg/L, which exceeded the seawater quality criteria III of Korea. The average values of DIN and DIP were 8.62 ${\mu}gN/L\;and\;1.26\;{\mu}gP/L$, respectively. The limiting factor for algal growth was DIN. In he total discharging loads of the watershed from unit loading estimations, BOD, TN and TP were 9,132.3, 2,727.2 and 304.2 kg/day, respectively. In addition, municipal sewage by the population as pollution sources and the city of Kwangyang as administrative district had the highest loads. For a appropriate water quality recovery of Kwangyang Bay, it is suggested that it is essential to estimate reduction rate of total pollutant loads by water quality modeling.

Improvement and Application of Total Maximum Daily Load Management System of Korea: 2. Determination of Margin of Safety and Allocation of Pollutant Loads (우리나라 오염총량관리제도의 적용 및 개선: 2. 안전율 산정 및 삭감부하량 할당)

  • Kim, Kyung-Tae;Chung, Eun-Sung;Kim, Sang-Ug;Lee, Kil Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.168-176
    • /
    • 2010
  • This study proposes the improvement of the present Total Maximum Daily Load (TMDL) management system of MOE (Ministry of Environment). The margin of safety (MOS) is calculated by a method using standard error and a method using variability and uncertainty. The allocation of pollutant loads are calculated using three methods, equal load reduction method, equal percent removal method and method using equity standards. This study applied the improved TMDL management system to the Anyangcheon watershed. Since MOS varies from 12% to 44% due to the high variability of measured and simulated data, it must not be ignored in the TMDL. The method using equity standards is the most proper in this application since the others produced unrealistic allocations. Area, runoff, water use quantity, population and budget are considered for equity standards. This study shows that this allocation method can be also applicable for the administrative units as well as the sub-watersheds. Finally, Hydrologic Simulation Program-FORTRAN (HSPF) with the allocated pollutant load was used to confirm whether it satisfy the water quality standard or not. This study will be helpful to improve the MOS and allocation system TMDL in the future.

Application of the High Resolution Aerial Images to Estimate Nonpoint Pollution Loads in the Unit Load Approach (원단위법에 의한 비점오염부하량 산정 시 토지피복 특성을 반영하는 고해상도 항공영상의 활용방안)

  • Lee, Bum-Yeon;Lee, Chang-Hee;Lee, Su-Woong;Ha, Do
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.5
    • /
    • pp.281-291
    • /
    • 2009
  • In Total Water Pollutant Load Management System of Korea, unit load approach based on land register data is currently used for the estimation of non-point pollutant load. However, a problem raised that land register data could not always reflect the actual land surface coverages which determine runoff characteristics of non-point pollution sources. As a way to overcome this, we tried to establish quantitative relationships between the aerial images (0.4m resolution) which reflect actual land surface coverages and the land registration maps according to the 19 major designated land-use categories in Kyeongan watershed. Analyses showed different relationships according to the land-use categories. Only a few land-use categories including forestry, road and river showed essentially identical and some categories such as orchard, parking lot and sport utility site showed no relationships at all between image data and land register data. Except for the two cases, all the other categories showed statistically significant linear relationships between image data and land register data. The analyses indicate that using high resolution aerial maps is a better way to estimate non-point pollutant load. If the aerial maps are not available, application of the linear relationships as conversion factors of land register data to image data could be an possible option to estimate non-point pollutant loads for the specific land-use categories in Kyeongan watershed.

A Study about the Influence of Pollutant Load on Water Quality in a Small Stream Watershed (소하천의 오염부하량이 수질에 미치는 영향에 관한 연구)

  • Lee, Sang-Hoon;Cho, Wook-Sang
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.1
    • /
    • pp.9-19
    • /
    • 2001
  • An intensive watershed survey including water quality measurement of 6 times was carried out in order to find out the relationship between pollutant load and water quality in a small stream watershed where livestock wastewater is the main source of water pollution. The findings from the survey are as follows. 1) The number of livestock showed large disagreement among county office, myon, and insite survey. It is vital to check the data at the beginning of watershed survey. 2) The fluctuation of streamflow and water quality was so large depending on the day of measurement that it is essential to set up continuous telemetering system to get reliable data about delivery ratio of pollutants. 3) It was helpful for setting the priority of investigation to check water quality and quantity at several points along the stream after dividing the watershed into 5 drainage areas. 4) To control the livestock wastewater, especially in case of cows, it is necessary to have roof system and prevent overland flow from the ground. In case of pig farms, it is recommended to have public treatment system instead of private treatment system. The exact emission load of livestock wastewater was difficult to estimate, and requires more study.

  • PDF