• Title/Summary/Keyword: Pollutant flux

Search Result 39, Processing Time 0.023 seconds

Groundwater Flow Model for the Pollutant Transport in Subsurface Porous Media Theory and Modeling (지하다공질(地下多孔質) 매체(媒體)속에서의 오염물질이동(汚染物質移動) 해석(解析)을 위한 지하수(地下水)흐름 모형(模型))

  • Cho, Won Cheal
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.97-106
    • /
    • 1989
  • This paper is on the modeling of two-dimensional groundwater flow, which is the first step of the development of Dynamic System Model for groundwater flow and pollutant transport in subsurface porous media. The particular features of the model are its versatility and flexibility to deal with as many real-world problems as possible. Points as well as distributed sources/sinks are included to represent recharges/pumping and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Sources/sinks strength over each element and node, hydraulic head at each Dirichlet boundary node and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution methed for the matrix equation approximating the partial differential equation of groundwater flow. The model also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. The groundwater flow model shall be combined with the model of pollutant transport in subsurface porous media. Then the combined model, with the applications of the Eigenvalue technique and the Dynamic system theory, shall be improved to the Dynamic System Model which can simulate the real groundwater flow and the pollutant transport accurately and effectively for the analyses and predictions.

  • PDF

Characteristics of Groundwater Contamination in Uncontrolled Landfill and Pollution Control Measures (불량 매립지에서의 지하수 오염특성과 환경오염 방지방안)

  • 구자중;윤석표
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.05a
    • /
    • pp.28-44
    • /
    • 1993
  • Remediation actions in uncontrolled landfill site should be conducted after the investigation of contamination status and potential health risk or damage. Based on the above, proper control measures should be established and operated. Also continuous monitoring should be followed. In this study, the status of ground water contamination around Nanji Landfill Site was investigated. Monitoring wells were installed around the landfill and ground water was sampled once a month and analyzed. Water quality of each monitoring well was different depending on the horizontal and vertical distance from the landfill, and the seasonal leachate characteristics were not significantly changed because percolating water stayed long time in the deep waste layer. It was predicted that major multivalent cations were mainly precipitated as metal carbonate form, and chemical mass balances (CMBs) could be applied for the apportionment of leachate contamination to ground water quality of surrounding areas of Nanji Landfill. Parameters required to estimate pollutant flux to the receptor near landfill were listed and discussion to get these parameters was made. Finally, based on the above data, control measures of ground water contamination were suggested and discussed.

  • PDF

The Estimation of Harmful Air Pollutant Emission from Landfill Site - A Subject of Sulfide Compounds - (쓰레기매립장에서의 유해대기오염물질 배출특성에 관한 연구 - 황화합물을 대상으로-)

  • 노기환;전의찬
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.1
    • /
    • pp.47-52
    • /
    • 2001
  • In this study, we focused on typically problematic sulfide compounds Gas samples were captured at Unjung-ding landfill site in Metropolitan Kwangju with flux chamber and floating chamber, and analyzed for the amount of hydrogen sulfide($H_2S$), dimethyl sulfide $((CH_3)_2S)$ and dimethyl disulfide$((CH_3)_2S_2)$. From the gas pipe, landfill surface and leachate treatment plant, estimated total amount of $H_2S$ emission are 12.6ton/yr, 0.01ton/yr and 1.04ton/yr; estimated total amount of $((CH_3)_2S)$ 30.7ton/yr, 0.08ton/yr and 1.72ton/yr; and estimated total amount of ($((CH_3)_2S_2)$ 2.2tom/yr, 0.02ton/yr and 1.03ton/yr, respectively. Further in-depth study on co-relation between age, packing characteristics, temperature and humidity of landfill site and gas emission characteristics is needed.

  • PDF

A Modeling Study on the Transport of Acid Pollutant by Regional Acid Deposition Model -Spacial Pattern and Variation of Air Pollutants on Eastern Asia and Central Part of Korea- (산성우모델에 의한 산성강하물의 수송에 관한 연구 - 동아시아 및 우리나라 중부지방의 대기오염물질 시공간분포 -)

  • Lee, Chong Bum;Cho, Chang Rae;Byun, Dae Won
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.1
    • /
    • pp.1-16
    • /
    • 1999
  • The acid deposition and photochemical modeling study was performed on the Eastern Asia using Regional Acid Deposition Model(RADM). The results of this study show that horizontal distribution of $SO_2$, concentration and dry deposition flux was higher in Beking, Shanghai and central part of Korea. However distribution pattern of sulfate and $O_3$ concentration calculated by RADM were not similar to emission pattern. In daytime, $SO_2$, sulfate and $O_3$ were mixed to whole PBL but in nighttime because of inversion layer these pollutants were suppressed to lower level.

  • PDF

Effect of Operating Conditions on the Fouling of UF Membrane in Treatment of Dissolved Organic Matter (UF를 이용한 용존성 유기물질 제거시 운전조건이 파울링에 미치는 영향)

  • Kwon, Eun-Mi;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1183-1191
    • /
    • 2000
  • Operating conditions for reduction of membrane fouling in treatment of dissolved organic matter by UF membrane process were investigated by pilot-scale plant using various operating conditions. As inlet pressure increased, increament of transmembrane pressure and flux decline were faster. The reason was due to the increase in adsorption of dissolved organic matter and the development of cake layer compression on the membrane surface. When efficient pressure (the difference of pressure between backwash and transmembrane pressures) was high, small amount of pollutant was retained on the membrane surface. When backwash was frequently conducted, low concentration of pollutant was maintained in recycling water. Therefore, backwash could be efficiently conducted with high efficient pressure and high frequency. Fouling rate was correlated with backwash and inlet pressures, recovery rate and cumulative permeated volume. Among the operating parameters backwash pressure was most closely related to fouling rate and inlet pressure was next to backwash pressure. It seems that the fouling was strongly related to pressure which leads to the cake layer compression and adsorption of dissolved organic matter.

  • PDF

Prediction of Pollutant Emissions from Lean Premixed Gas Turbine Combustor Using Chemical Reactor Network (화학반응기 네트워크을 이용한 희박 예혼합 가스터빈 연소기에서의 오염물질 예측에 관한 연구)

  • Park, Jung-Kyu;Nguyen, Truc Huu;Lee, Min-Chul;Chung, Jae-Wha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.225-232
    • /
    • 2012
  • A chemical reactor network (CRN) was developed for a lean premixed gas turbine combustor to predict the emission of pollutants such as NOx and CO. In this study, the predictions of NOx and CO emissions from lean premixed methane-air combustion in the gas turbine were carried out using CHEMKIN and a GRI 3.0 methane-air combustion mechanism, which includes the four NO formation mechanisms for various load conditions. The calculated results were compared with experimental data obtained from a modified test combustor to validate the model. The contributions of the four NO pathways were investigated for various load conditions. The effects of nonuniformity of the mass flux and of the equivalence ratio of the injector on the NOx formation were investigated, and a method of reducing the pollutant formation was suggested for the development of a sub-10 ppm gas turbine combustor.

Estimation of Atmospheric Deposition Velocities and Fluxes from Weather and Ambient Pollutant Concentration Conditions : Part I. Application of multi-layer dry deposition model to measurements at north central Florida site

  • Park, Jong-Kil;Eric R. Allen
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.1
    • /
    • pp.31-42
    • /
    • 2000
  • The dry deposition velocities and fluxes of air pollutants such as SO2(g), O3(g), HNO3(g), sub-micron particulates, NO3(s), and SO42-(s) were estimated according to local meteorological elements in the atmospheric boundary layer. The model used for these calculations was the multiple layer resistance model developed by Hicks et al.1). The meteorological data were recorded on an hourly basis from July, 1990 to June, 1991 at the Austin Cary forest site, near Gainesville FL. Weekly integrated samples of ambient dry deposition species were collected at the site using triple-fiter packs. For the study period, the annual average dry deposition velocities at this site were estimated as 0.87$\pm$0.07 cm/s for SO2(g), 0.65$\pm$0.11 cm/s for O3(g), 1.20$\pm$0.14cm/s for HNO3(g), 0.0045$\pm$0.0006 cm/s for sub-micron particulates, and 0.089$\pm$0.014 cm/s for NO3-(s) and SO42-(s). The trends observed in the daily mean deposition velocities were largely seasonal, indicated by larger deposition velocities for the summer season and smaller deposition velocities for the winter season. The monthly and weekly averaged values for the deposition velocities did not show large differences over the year yet did show a tendency of increased deposition velocities in the summer and decreased values in the winter. The annual mean concentrations of the air pollutants obtained by the triple filter pack every 7 days were 3.63$\pm$1.92 $\mu\textrm{g}$/m3 for SO42-, 2.00$\pm$1.22 $\mu\textrm{g}$/m-3 for SO2, 1.30$\pm$0.59 $\mu\textrm{g}$/m-3 for HNO3, and 0.704$\pm$0.419 $\mu\textrm{g}$/m3 for NO3-, respectively. The air pollutant with the largest deposition flux was SO2 followed by HNO3, SO42-(S), and NO3-(S) in order of their magnitude. The sulfur dioxide and NO3- deposition fluxes were higher in the winter than in the summer, and the nitric acid and sulfate deposition fluxes were high during the spring and summer.

  • PDF

Research on improvement of water purification efficiency by porous concrete using bio-film (생물막을 이용한 다공성 콘크리트의 수질정화 효율 개선에 대한 연구)

  • Kim, Tae-Hoon;Li, Feng-Qi;Ahn, Tae-Woong;Choi, I-Song;Oh, Jong-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.6
    • /
    • pp.815-821
    • /
    • 2011
  • This study aims to estimate the biological decomposition capacity of MPC(Microorganism Porous-Concrete). MPC has specific surface area formed by inside pores, and bio compound was added to those pores to reduce pollutants loading. To evaluate the water purification capacity of MPC, we carried out the comparative studies using different media types [GPC(General Porous-concrete), CPC(Compound porous-concrete), LPC(Lightweight aggregate porous-concrete)] under the condition of CFSTR, and different retention times (30, 60 and 120 min). We also estimated the purification capacity of MPC under different concentrations of pollutant loadings. The MPC showed higher efficiency in water purification function than other conventional porous concretes with efficient decrease rates of SS, BOD, COD, and nutrient concentrations. In the comparison experiment for different retention times, MPC showed the highest removal efficiency for all tested pollutants in the longest retention time(120 min). In the long period test, the removal efficiencies of MPC concrete were high until 100 days after the set up of the operation, but began to decrease. Outflow flux was invariable compared with inflow flux so that extra detention time for media fouling such as back washing is not needed. But the results suggested that appropriate management is necessary for long-term operation of MPC. As the final outcome, MPC using bio organisms is considered to be efficient for stream water purification when they used as substrates for artificial river structure.

A Study on the Radial Spray Performance of a Plaint-Jet Twin-Fluid Nozzle (액주형 이류체노즐의 반경반향 분무특성에 관한 연구)

  • 최진철;노병준;강신재
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.662-669
    • /
    • 1994
  • In the combustion system, the optimum spray conditions reduce the pollutant emission of exhaust gas and enhance the fuel efficiency. The spray characteristics-the drop size, the drop velocity, the number density and the mass flux, become increasingly important in the design of combustor and in testifying numerical simulation of spray flow in the combustor. The purposes of this study are to clarify the spray characteristics of twin-fluid nozzle and to offer the data for combustor design and the numerical simulation of a spray flow. Spatial drop diameter was measured by immersion sampling method. The mean diameter, size distribution and uniformity of drop were analyzed with variations of air/liquid mass flow ratio. The results show that the SMD increases with the liquid supply flow rate and decreases with the air supply velocity. The radial distribution of SMD shows the larger drops can diffuse farther to the boundary of spray. And the drop size range is found to be wider close to the spray boundary where the maximum SMD locates.

Biological Wastewater Treatment Using Submerged Nonwoven Fabric Separation (침적식 부직포 막분리를 이용한 생물학적 폐수처리)

  • Choi, Hyoung-Sub;Moon, Byung-Hyun;Heo, Jong-Soo;Lee, Hong-Jae
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.156-160
    • /
    • 1997
  • The combination of biological wastewater treatment process and membrane separation has many advantages such as better effluent quality and system stability over the conventional biological wastewater treatment process. In this study, direct membrane separation using nonwoven fabric was applied to biological wastewater treatment. A nonwoven fabric module was submerged in the aerated bioreactor. And accumulated biomass in the bioreactor was separated by suction. The system was operated with various condition to investigate pollutant removal efficiencies and flux. After formation of biomass layer on nonwoven fabric surface, a day, the stable effluent water quality was obtained. The flux decreased at a high suction pressure faster than a low pressure. The stable flux was obtained at the pressure of $21{\sim}25cmHg$. In spite of variation of hydraulic retention time, organic loading rate, the removal efficiencies of BOD, $COD_{Cr}$. $COD_{Mn}$ were very high as follows : $95.2%(0.14{\sim}0.97\;BODKg/m^3/day)$, $86.0%(0.17{\sim}1.39\;COD_{Cr}Kg/m^3/day)$, $90.0%(0.097{\sim}0.61\;COD_{Mn}Kg/m^3/day)$.

  • PDF