• Title/Summary/Keyword: Pollinator Habitat Conservation

Search Result 4, Processing Time 0.021 seconds

A Risk Assessment of Orchard Pollination Services using a Species Distribution Model for Wild Pollinators (야생화분매개곤충 분포 모형을 활용한 과수원 수분 서비스 위험도 평가)

  • Koh, In-Su;Choe, Hye-Yeong;Kwon, Hyuk-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.6
    • /
    • pp.29-41
    • /
    • 2020
  • Wild pollinators provide important pollination services for crops. However, their geographical ranges and impact on pollination services have not been fully explored within the scope of Korean agricultural land. This study aims to identify spatial supply-demand mismatches across orchard fields in the context of assessing pollination service risk. We first used National Ecosystem Survey data and a species distribution model (MaxEnt) to develop the geographic range of each of 32 wild pollinators belonging to three families (Diptera, Hymenoptera, and Lepidoptera). We then summed the modeled presence probability of each species to obtain a measure of spatially explicit pollinator richness. This modeled richness, defined as pollination supply, was compared with the summed area of orchard fields at the municipal boundary level to identify areas with supply-demand mismatches. The study found that Lepidoptera showed the highest species richness (8.3±1.5), followed by Hymenoptera (4.3±0.8) and Diptera (3.5±0.8) species. Median orchard area was 1.5 ㎢ (range of 0-176.7 ㎢) among 250 municipal regions in South Korea. The municipal regions were divided into three categories (tertiles) of low, middle, and high pollination supply and demand according to, respectivley, average polliator richness and orhard area. Finally, we found that 55 municipal regions (accounting for 49% of national orchard land) potentially faced high risk of pollination deficits, 81 regions (48% of national orchard land) faced intermediate risk, and 63 regions faced low risk (3% of national orchard land). In conclusion, this study revealed significant mismatch between pollination supply and demand and developed risk assessment map will guide our future efforts on pollinator habitat conservation and monitoring to conserve crop pollination services.

Conservation and Utilization of Insect Pollinators for Promotion of Agricultural Production in Bangladesh

  • Amin, Md. Ruhul;Hossain, Md. Shamim;Suh, Sang Jae;Kwon, Yong Jung
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.4
    • /
    • pp.171-174
    • /
    • 2014
  • Agriculture in Bangladesh is slowly transforming to the production of high-value fruit and vegetable crops to satisfy the nutrient requirements of their large size population, and this transformation is creating new challenges as regards improving and maintaining the productivity and crop quality. The country has a declining trend of insect pollinators due to habitat loss, land use changes, monoculture-dominated agriculture, and the excessive and indiscriminate use of pesticides. Such pollinator deficiencies can cause reduced yields, thereby threatening the subsistence of marginal farmers. In Bangladesh, growers enjoy free pollination services from the naturally occurring insect populations. While honeybees pollinate mustard, onions, and melons, many other hymenopterans, coleopterans, hemipterans, dipterans, and thysanopterans also visit the crop fields, making these insects significant for the food security, environment, and economy of the nation. Therefore, attention should be given to public policy, research, and human resource development that promotes knowledge and appreciation of the conservation and utilization of insect pollinators.

Nationwide Spatiotemporal Distribution of Some Selected Aculeata (Hymenoptera) in South Korea, based on Materials Collected with Malaise Trap in 2017 and 2018 (2017~2018년 말레이즈 트랩을 이용한 남한 내 야생벌(벌목: 벌아목)의 시·공간별 출현 및 분포 현황)

  • Yu, Dong Su;Kwon, Oh-Chang;Kim, Honggie;Kim, Jeong-Kyu
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.6
    • /
    • pp.654-663
    • /
    • 2019
  • Pollinators, which are important organisms in pollination ecology, have been highly valued for their economic contributions to crop production in the agricultural and biotechnology industries. As the production of over 70% of farm products, such as fruits, are mediated by pollinators, bees are important and useful insects to humans. However, pollinators are now seriously threatened with their numbers decreasing annually and their biodiversity being negatively affected by ongoing climate change, misuse of land, change of geographical features, and use of pesticides to increase agricultural production. Thus, surveys and analyses of the emergence and distribution of wild bees are important for conservation and management practices designed to help them continue to play their ecological and agricultural roles despite negative pressures, such as climate and topography changes. We surveyed pollinators, especially wild bees, at 51 research sites in South Korea every two to four weeks for two years from 2017 to 2018 using ez-Malaise traps and analyzed the temporal and spatial distribution of wild bees. The bees showed a normal temporal distribution that peaked between July and August. The bees' working period lasted until November. The spatial distribution of wild bees showed a significant correlation with latitude, and different bees were identified depending on the local habitat. No significant correlation was found for longitudinal distribution with regression analysis (p > 0.05), but this study identified locally specific wild bees. Although we could not predict significant distribution according to longitude, Further studies should be able to analyze the difference in the distribution of wild bees according to the climate, topography, and land-use patterns by humans. The results of this study provide basic information on pollinator distribution, which can be useful in agriculture and for the conservation and management of biodiversity in South Korean pollination ecology.

Distributional Characteristics and Evaluation of the Population Sustainability, Factors Related to Vulnerability for a Polygonatum stenophyllum Maxim. (층층둥굴레(Polygonatum stenophyllum Maxim.)의 분포특성과 개체군의 위협요인 및 지속가능성 평가)

  • Kim, Young-Chul;Chae, Hyun-Hee;Ahn, Won-Gyeong;Lee, Kyu-Song;Nam, Gi-Heum;Kwak, Myoung-Hai
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.3
    • /
    • pp.303-320
    • /
    • 2019
  • Plants interact with various biotic and abiotic environmental factors. It requires much information to understand the traits of a plant species. A shortage of information would restrict the assessment, especially in the evaluation of what kind of factors influence a plant species to face extinction. Polygonatum stenophyllum Maxim. is one of the northern plants of which Korea is the southern distribution edge. The Korean Ministry of Environment had designated it to be the endangered species until December 2015. Although it is comparatively widespread, and a large population has recently been reported, it is assessed to be vulnerable due to the low population genetic diversity. This study evaluated the current distribution of Polygonatum stenophyllum Maxim. We investigated the vegetational environment, population structures, phenology, soil environment, and self-incompatibility based on the results. Lastly, we evaluated the current threats observed in the habitats. The habitats tended to be located in the areas where the masses at the edge of the stream accumulated except for those that were located on slopes of some mountainous areas. Most of them showed a stable population structure and had re-established or recruited seedlings. Polygonatum stenophyllum Maxim. had the difference in time when the shoots appeared above the ground depending on the depth of the rhizome located in the underground. In particular, the seedlings and juveniles had their rhizome located shallow in the soil. Visits by pollinator insects and success in pollination were crucial factors for bearing of fruits by Polygonatum stenophyllum Maxim. The threats observed in the habitat of Polygonatum stenophyllum Maxim. included the expansion of cultivated land, construction of new buildings, and construction of river banks and roads. Despite such observed risk factors, it is not likely that there would be rapid population reduction or extinction because of its widespread distribution with the total population of more than 2.7 million individuals and the new populations established by the re-colonization.