• Title/Summary/Keyword: Pollen tube

Search Result 50, Processing Time 0.036 seconds

Tropisms of Pollen-Tubes In Vitro (화분관 In Vitro 생장의 굴수성에 대하여)

  • 곽병화
    • Journal of Plant Biology
    • /
    • v.14 no.2
    • /
    • pp.11-14
    • /
    • 1971
  • Zephyranthes candida, Narcissus pseudonarcissus and Crinum asiaticum pollen were placed near their pistil parts respectively on agar cultural media(microslides) containing 10% sucrose and 100mg/l botic acid plus 1% agar with or without calcium and some other calciumsupporting inorganic salts. If fresh pistils (100% moisture) were used pollen grew toward their pistil parts, showing "positive" tropism. This was also true when combinations among three different species were made. Pollen tubes grew away from the pistils if they were dried (below 10% moisture), showing "negative" tropism. Pollen could not show any tropic growth and thus grew at random of all directions if the pistil parts were incompletely dried (approximately 50% moisture). The similar tropic responses of pollen-tube growth with the three species could be demonstrated with etiehr wet or dried tooth-pick segments. Calcium jons in the basic medium merely promated pollen-tube growth and so either "positive" or "negative" tropism became rather distinctive, but they were not tropically active. Pollen tubes grow toward pistil parts with more moisture content and seem to be hydrotropically sensitive. This was assumed due to the cohesive force existing in water molecules.esive force existing in water molecules.

  • PDF

Changes in potassium distribution with the maturity of barley(Hordeum vulgar L.) pollen

  • Lee, Kui-Jae;S. Rehman;Park, Min-Kyung;Lee, Wang-Hyu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.10b
    • /
    • pp.46-46
    • /
    • 2003
  • An important function of pollen aperture is believed to be regulating the water balance of the pollen when subjected to changes in humidity (Shukla, et al. 1998). It has been reported that mature barley pollen rapidly swells upon hydration and pollen tube emerges in a few minutes of germination (Anthony and Harlan, 1920). Although, there could be other factors responsible for rapid hydration of pollen. However, K is widely known for its rapid action as an osmotic regulator (Heslop-Harrison and Heslop-Harrison, 1996). In the present study, changes in K distrbution were traced during different stages of pollen maturation in barley. The existence of K at the aperture area of matured pollen may possibly play other import physiological roles. For example, K is reported to be an essential constituent of pollen germination and even required in higher concentration for pollen tube growth(Fan et al., 2001). These results suggest that there could be a possible relationship between K, located at the aperture area and rapid uptake of water by pollen.

  • PDF

Optimal Condition for Pollen Germination of Rare and Endangered Forsythia saxatilis (희귀.멸종위기 산개나리(Forsythia saxatilis) 화분의 최적 발아 조건)

  • Han, Sim-Hee;Kang, Hye Jin;Kim, Gil Nam;Kim, Du Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.1
    • /
    • pp.136-142
    • /
    • 2013
  • Optimal condition for pollen germination was suggested as a basic research of flowering physiology in order to identify the characteristics of flowering and seed setting of rare and endangered Forsythia saxatilis Nakai. Pollen samples were collected during flowering time from the end of March to the beginning of April. First, a suitable germination temperature, medium sucrose concentration and germination time were determined for pollen germination and pollen tube elongation in vitro, and then an optimal pH of culture medium. Pollen germination and tube elongation were significantly different among the levels of germination temperature, sucrose concentration and germination time. Interactive effects were observed between germination temperature and time, germination temperature and sucrose concentration, germination time and sucrose concentration. Pollen germination was the highest at $10^{\circ}C$ and increased with the increase of sucrose concentration, whereas it had no relation with germination time. In addition, pollen germination and tube elongation did not increase at more than 15% of sucrose concentration and 24 hours later. Pollen germination was the highest at pH 5 (20.8%) and the lowest at pH 6 (3.8%). In conclusion, $10^{\circ}C$, 15% sucrose and pH 5 were proposed as the optimal condition for pollen germination 24 hours later of pollen culture.

Effect of Boric Acid on In Vitro Pollen Germination in Transgenic Plants Expressing Monoclonal Antibodies (단일항체를 발현하는 형질전환 식물체의 In Vitro 화분발아에 대한 Boric Acid의 영향)

  • Ahn, Mi-Hyun;Lee, Kyung-Jin;Ko, Ki-Sung
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.339-346
    • /
    • 2007
  • Pollen germination viability is an essential factor to produce seeds from pollination and fertilization, which are required to maintain plant generation. In this study, we tried to identify the effect of boric acid on pollen germination and tube grouch in non-transgenic and transgenic plants expressing monoclonal antibodies (anti-colorectal cancer mAb CO17-1A, anti-breast cancer mAb BR55, and anti-rabies virus mAb57). The pollen of non-transgenic plant was treated with different concentration of boric acid (0, 5, 10, 15, 20, $40{\mu}g/mL$) in germination buffer to investigate its effect on in vitro pollen germination. At $20{\mu}g/mL$ of boric acid, tile pollen germination rate was the highest (49.5%) compared to other concentrations. In general, the germination rate significantly increased 3-10 folds in boric acid ($20{\mu}g/mL$) treated group in non-transgenic and transgenic plants. Also, the pollen tube length increased in boric acid ($20{\mu}g/mL$) treated groups. In the treated group, the pollen tube length increased until 3 h boric acid treatment and decreased after the 3 h, indicating that the 3 h is the most appropriate incubation time period. Western blot analysis showed that the mAb transgene expression was more stable in leaf than pollen in transgenic plants. This study suggested that $20{\mu}g/mL$ of boric acid is ideal concentration to induce in vitro pollen germination of transgenic plants expressing therapeutic monoclonal antibodies, indicating stable pollination and fertilization in transgenic plants.

Recent Advances in the Studies of Self-Incompatibility of plants (식물의 자가불화합성, 최근의 진보)

  • 한창열;한지학
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.5
    • /
    • pp.253-275
    • /
    • 1994
  • Many flowering plants possess genetically controlled self -incompatibility (SI) system that prevents inbreeding and promotes outcrosses. SI is usually controlled by a single, multiallelic S-locus. In gametophytically controlled system, SI results when the S-allele of the pollen is matched by one of the two S-alleles in the style, while in the sporophytic system self-incompatible reaction occurs by the interaction between the pistil genotype and genotype of, not the pollen, but the pollen parent In the former system the self-incompatible phenotype of pollen is determined by the haploid genome of the pollen itself but in the latter the pollen phenotype is governed by the genotype of the pollen parent along with the occurrence of either to-dominant or dominant/recessive allelic interactions. In the sporophytic type the inhibition reaction occurs within minutes following pollen-stigma contact, the incompatible pollen grains usually failing to germinate, whereas in gametophytic system pollen tube inhibition takes place during growth in the transmitting tissue of the style. Recognition and rejection of self pollen are the result of interaction between the S-locus protein in the pistil and the pollen protein. In the gametophytic SI the S-associated glycoprotein which is similar to the fungal ribonuclease in structure and function are localized at the intercellular matrix in the transmitting tissue of the style, with the highest concentration in the collar of the stigma, while in the sporophytic SI deposit of abundant S-locus specific glycoprotein (SLSG).is detected in the cell wall of stigmatic papillae of the open flowers. In the gametophytic system S-gene is expressed mostly at the stigmatic collar the upper third of the style length and in the pollen after meiosis. On the other hand, in the sporophytic SI S-glycoprotein gene is expressed in the papillar cells of the stigma as well as in e sporophytic tape is cells of anther wall. Recognition and rejection of self pollen in the gametophytic type is the reaction between the ribonuclease in the transmitting tissue of the style and the protein in the cytoplasm of pollen tube, whereas in the sporophytic system the inhibition of selfed pollen is caused by the interaction between the Sycoprotein in the wall of stigmatic papillar cell and the tapetum-origin protein deposited on the outer wall of the pollen grain. The claim that the S-allele-associated proteins are involved in recognition and rejection of self pollen has been made merely based on indirect evidence. Recently it has been verified that inhibition of synthesis of S$_3$ protein in Petunia inflata plants of S$_2$S$_3$ genotype by the antisense S$_3$ gene resulted in failure of the transgenic plant to reject S$_3$ pollen and that expression of the transgenic encoding S$_3$ protein in the S$_1$S$_2$ genotype confers on the transgenic plant the ability to reject S$_3$ pollen. These finding Provide direct evidence that S-proteins control the s elf-incompatibility behavior of the pistil.

  • PDF

Molecular Characterization of Brassica Pollen Allergen

  • Toriyama, Kinya;Okada, Takashi
    • Journal of Plant Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.97-99
    • /
    • 2000
  • Allergy to Brassica pollen has been reported in some countries. We have cloned a cDNA encoding a Brassica pollen allergen, Bra r 1. Bra r 1 belongs to a new family of $Ca^{2+}$-binding proteins, characterized by the presence of two EF-hand calcium-binding domains. Bra r 1 was detected in the tapetum, microspores, pollen coat and pollen tubes, indicating Bra r 1 is involved in pollen pistil interaction and pollen tube growth. We have engineered the hypoallergenic mutants of Bra r 1 for immunotherapy. Here we describe the review of molecular characterization of Bra r 1.

  • PDF

Selection of Cultivars and Organic Solvents to Improve Fruit Set of Greenhouse Watermelon during Cold Period (저온기 시설수박 착과율 증진을 위한 품종 및 화분분리 유기용매 선발)

  • Lim, Chae-Shin
    • Journal of Bio-Environment Control
    • /
    • v.19 no.3
    • /
    • pp.147-152
    • /
    • 2010
  • Poor fruit set during winter period is one of the biggest problem in plastic tunnel watermelon cultivation. Hand pollination is inevitable to maximize fruit set of the winter watermelon. Productivity and viability of pollen grain and organic solvents for pollen storage were investigated. All cultivars produced more than 10 mg/flower except for 'Kumchun' cultivar. Pollen amount per flower were 13.8 mg in 'Bok' and 12.1 mg in 'Speedkul'. Germination rate of pollen grains incubated at $30^{\circ}C$ right after soaking in pentane solvent were 76% in 'Kumchun' as the lowest and 92% in 'Apollokul' as the highest. The pollen of 'Bok' showed the highest germination rate by 75% after a 15-day storage in pentane. All cultivars showed their pollen germination rate below 25% after a 24-day storage. Among the cuitivars, speed of pollen tube growth in vitro were relatively lower in 'Kumchun' and 'Sambokkul' by below $50\;{\mu}m/hr$. Pollen tube of these cultivars tended to burst during its elongation on the medium. Pollen stored 24 hrs in organic solvents showed 45, 39, 34, 23, and 19% of germination in pentane, ethyl ether, n-hexane, ethyl acetate, and acetone, respectively. Compared with light condition, pollen viability was higher in darkness during pollen storage in organic solvents. Pollen grain was susceptible to the organic solvent. The viability of pollen grains seems to be influenced greatly by duration of soaking pollen in organic solvent and the polarity of solvents. Organic solvent damages surface of pollen grain and extent of damage was varied by the solvents.

Studies on Incompatibility in Interspecific Hybrid Between Panax ginseng C. A. Meyer and Panax quinquefolium L. (고려인삼과 미국삼의 종간 잡종식물체 불화합성에 관한 연구)

  • 이성식;정열영
    • Journal of Ginseng Research
    • /
    • v.21 no.2
    • /
    • pp.85-90
    • /
    • 1997
  • This study was carried out to clarify the cause of incompatibility in interspecific hybrid plant between Panax ginseng and p. quinquefolium. The floral structure of F,(p.g. x p.q.) hybrid was normal because the redundant anther was 0.2 mm longer than pistil in Fl hybrid and the size and structure of redundant carpel in F, hybrid were similar to P. ginseng and p. quiquefolium Pollens of $F_1$ hybrid did not germinate on stigma of P-quinquefolium but germinated well on stigma of P. ginseng. Pollen tube was able to penetrate styles completely and seed harvest rate was 16.8% in field. However on stigma of $F_1$ hybrid, Pollen did not germinate when P. ginseng was used as male Parent. In addition, the growth of pollen tube was halted on style and seed was not set when P qlfinquefoEi2a was used as male Parent. These suggest that the inhibitor of pollen germination present on stigma caused $F_1$ hybrid sterility. It took 5 hours for pollen grains to germinate, 12 hours to arrive at in trance of ovule, 16 hours to penetrate micropyles in Panax ginseng.

  • PDF

Lily Pollen Growth in vitro and Agrobacterium-mediated GUS Gene Transformation via Vacuum-Infiltration

  • Park, In-Hae;Park, Hee-Sung
    • Journal of Plant Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.151-154
    • /
    • 2002
  • Conditions for lily pollen growth in vitro and transformation were optimized. Active pollen tube development was achieved effectively in a medium containing 7% sucrose with pH adjusted to 5.7 at the temperature of 27$^{\circ}C$ for about 16-24 hours. Pollen growth was little impaired by the presence of kanamycin at concentration up to 100 mg/L. Pollen rains near the beginning of germination stage were more reliable for Agrobacterium-mediated GUS DNA transformation via vacuum infiltration lasted for 20-40 minutes. GUS DNA integration and its expression in fully developed pollen tubes could be confirmed by Southern blot hybridization, RT-PCR and histochemical staining.

In Vitro Culture and Transformation by Agroinfiltration of Lisianthus (Eustoma russellianus) Pollen (Lisianthus 화분의 기내배양 및 Agroinfiltration에 의한 형질전환)

  • Park Hee Sung
    • Journal of Life Science
    • /
    • v.14 no.6 s.67
    • /
    • pp.1018-1022
    • /
    • 2004
  • Optimized conditions for Agrobacterium-mediated lisianthus pollen transformation were adjusted using various factors such as temperature, pH and sucrose concentration. Pollen tube growth was successfully achieved in a medium (pollen germination medium; PGM) containing $7-15\%$ sucrose with pH in the range of 5.5-7.0 at temperature of $20-27^{\circ}C$. Lisianthus pollen was vacuum-infiltrated with Agrobacterium cell suspension for 20 min, and transformed pollen was confirmed by GUS histochemistry and Southern hybridization following RT-PCR. Transgenic pollen system may be utilized for establishing an area of plant transient expression systems based on the convenient pollen transformation procedure presented in here.