• Title/Summary/Keyword: Polishing equipment

Search Result 72, Processing Time 0.023 seconds

Dislocation densities of CMP processed sapphire wafers for GaN epitaxy

  • 황성원;남정환;신귀수;김근주;서남섭
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.05a
    • /
    • pp.18-22
    • /
    • 2003
  • The sapphire wafers for blue light emitting devices were manufactured by the implementation of the surface machining technology based on micro-tribology. This process has been performed by grinding, lapping and polishing. The surfaces of sapphire wafers were mechanically affected by residual stress and surface default. This mechanical stress and strain can be cured by thermal anneal ing process. The sapphire crystalline wafers were annealed at $1100~1400^{\circ}C$ and then characterized by double crystal X-ray diffraction. The sample showed good quality of crystalline wafer surface wi th full width at hal f maximum of 16 arcsec for the 4-hour heat-treatment at $1300^{\circ}C$.

  • PDF

Analysis of Acoustic Emission Signal Sensitivity to Variations in Thin-film Material Properties During CMP Process (CMP 공정중 박막 종류에 따른 AE 신호 분석)

  • Park, Sun Joon;Lee, Hyun Seop;Jeong, Hae Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.863-867
    • /
    • 2014
  • In this study, an acoustic emission (AE) sensor was used for measuring the abrasive and molecular-scale phenomena in chemical mechanical polishing (CMP). An AE sensor is a transducer that converts a mechanical wave into an electrical signal, and is capable of acquiring high-level frequencies from materials. Therefore, an AE sensor was installed in the CMP equipment and the signals were measured simultaneously during the polishing process. In this study, an AE monitoring system was developed for investigating the sensitivity of the AE signal to (a) the variations in the material properties of the pad, slurry, and wafer and (b) the change in conditions during the CMP process. This system was adapted to Oxide and Cu CMP processes. AE signal parameters including AE raw frequency, FFT, and amplitude were analyzed for understanding the abrasive and molecular-level phenomena in the CMP process. Finally, we verified that AE sensors with different bandwidths could function in complementary ways during CMP process monitoring.

Awareness and educational needs on preventive dental treatment among oral health workers (구강보건인력의 예방치과진료에 대한 인식 및 교육요구도)

  • Jung, Jae-Yeon;Han, Su-Jin
    • Journal of Korean society of Dental Hygiene
    • /
    • v.17 no.5
    • /
    • pp.875-887
    • /
    • 2017
  • Objectives: The objective of this study is to provide basic data needed in developing an educational program designed to upgrade capacity and awareness of preventive dental treatment among oral health workers, by analyzing levels of awareness of preventive dental treatment and educational needs among dentists and dental hygienists. Methods: The collected data was analyzed with SPSS program ver. 19.0. The data was under t-test. Results: The frequency level of giving preventive dental treatment to patients among dentists and dental hygienists is below mid-point, 3 on the 5-point Likert scale. In terms of frequency level per item, scaling & polishing was ranked the highest, followed by periodontal maintenance, tooth-brushing instruction, and prescription and instruction of oral care product in descending order. On the questions asking how important preventive dental care they perceive to be, both dentists and dental hygienists perceived it to be highly important. When they were asked to rank those items by the importance of education, they considered periodontal maintenance as the most important one, followed by individual education of oral health, incremental oral health care, scaling& polishing, toothbrushing instruction, and prescription and instruction of oral care product. Respondents pointed out problems in running a preventive dental treatment program as follows: overwork, lack of dedicated workforce, un-fixed costs, and lack of necessary equipment. When they were asked to point out items needed to run such a program, the largest number of respondents indicated dedicated workforce placement, followed by improving awareness of the customer, and improving awareness of the dental workers. Conclusions: In order to effectively run a preventive dental treatment program, it is necessary for oral health workers to clearly understand the concept of it. It is also necessary to develop and operate an education program on preventive dental treatment targeting oral health professionals.

Planarization of Cu intereonnect using ECMP process (전기화학 기계적 연마를 이용한 Cu 배선의 평탄화)

  • Jeong, Suk-Hoon;Seo, Heon-Deok;Park, Boum-Young;Park, Jae-Hong;Lee, Ho-Jun;Oh, Ji-Heon;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.79-80
    • /
    • 2007
  • Copper has been used as an interconnect material in the fabrication of semiconductor devices, because of its higher electrical conductivity and superior electro-migration resistance. Chemical mechanical polishing (CMP) technique is required to planarize the overburden Cu film in an interconnect process. Various problems such as dishing, erosion, and delamination are caused by the high pressure and chemical effects in the Cu CMP process. But these problems have to be solved for the fabrication of the next generation semiconductor devices. Therefore, new process which is electro-chemical mechanical planarization/polishing (ECMP) or electro-chemical mechanical planarization was introduced to solve the. technical difficulties and problems in CMP process. In the ECMP process, Cu ions are dissolved electrochemically by the applying an anodic potential energy on the Cu surface in an electrolyte. And then, Cu complex layer are mechanically removed by the mechanical effects between pad and abrasive. This paper focuses on the manufacturing of ECMP system and its process. ECMP equipment which has better performance and stability was manufactured for the planarization process.

  • PDF

A study on the capability of edge shape milling tool with the operatio parameters of equipment (장비운영요소변화에 따른 석재측면 성형공구의 성능시험 연구)

  • 선우춘
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.332-341
    • /
    • 1998
  • Conventional polishing of stone panel edges has been done by hand. While this has changed somewhat with the advent of automatic machines, it is still very much a hand finishing technology. For the development of edge shape milling tool, the primary test on characteristics of edge shape milling tool was carried out. This paper presents the results of tests focused upon the milling capability that was varied by the variables of operation parameters. Author tried to confirm the effect of six operation parameters of equipment such as rotation speed, advance speed, applied load, water flow rate and rotational direction. The result from test was described in term of shape milling capability that was defined as cutting volume of rock by unit weight of tool wear. The variance of the results could indicate the optimum level of each operating parameters. The test was also carried out to determine the abrasion resistance varied according to the abrasive flow rate. The abrasion resistance was increased with the abrasive flow rate, but over some rate it was not changed.

  • PDF

Electrical and Magnetical Characteristics for PZT/Ferrite Ceramics (PZT/Ferrite 합성 세라믹의 특성에 관한 기초연구)

  • 김장용;이상현;이승봉;안형호;현충일;이명세;문병무
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.4
    • /
    • pp.153-158
    • /
    • 2003
  • This thesis deal with ferroelectric and ferromagnetic materials. PZT/Ferrite ceramics were made by the making process using PZT powder and garnet ferrite powder. PZT and ferrite are mixed as much 90%-10%, 50%-50%, and so on. After making samples, we are polishing samples until thickness is 0.1~0.2mm. We measured all kinds of samples in room temperature and applied magnetic field from -4500 to 4500 Oersted and conducted test of magnetical and electrical measurement using VSM and lpC resolution electrometer calibrated with RT66A pulsed tester. From this measurement, we can calculate tunability of these samples using C value obtained from P-E loop. As a result, it was able to measure magnetic characteristic when two matter had each other component ratio, and it was compound. However, it confirmed the possibility that was able to have ferroelectric characteristic with you in PZT 90% and ferrite 10%. Therefore, If this thing comes for PZT 50% and ferrite 50% have ferroelectric characteristic as him in a compound sample ore, can use this in an oscillator, supersonic waves detector in addition to a piezoelectric element. It may contribute to multipurpose of an element and demands such as a miniaturization of equipment, efficiency, reduce of a price which can use a characteristic of two components.

The plaque-removing efficacy of a single-tufted brush on the lingual and buccal surfaces of the molars

  • Lee, Dong-Won;Moon, Ik-Sang
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.3
    • /
    • pp.131-134
    • /
    • 2011
  • Purpose: To test the plaque-removal efficacy of a single-tufted toothbrush on the posterior molars compared with a flat-trimmed toothbrush. Methods: Forty-nine subjects were selected. Professional instruction and written brushing instructions were given. After thorough supra-gingival scaling and polishing, all subjects were asked to abstain from oral hygiene procedures for 24 hours prior to the first experiment. The subjects were randomized to a treatment sequence. The modified Quigley and Hein plaque index was recorded pre- and post-tooth brushing, at 6 surfaces of the posterior molars. After a wash-out period, all the remaining plaque was removed professionally. Twenty-four hours of brushing abstinence was again performed. The plaque index was recorded pre- and post-tooth brushing after the subjects were given the second toothbrush in the cross-over sequence. Results: The percentage reductions in plaque scores achieved with the single-tufted brushes were significantly higher than those of the flat-trimmed brush at the maxillary buccal interproximal, marginal and mandibular lingual interproximal site. The other locations showed no significant difference. Conclusions: The results of the present study implied that the single-tufted brush could be an effective tool for the removal of plaque at some, but not all, sites of the posterior molars.

Curtailment of Water use Through the Integration of Process Waste Waters at the Standard Thermal Power Plant (표준화력발전소의 발전폐수 통합을 이용한 용수 사용량 절감)

  • Mun, Gyeong-Seok;Jang, Heui-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.437-443
    • /
    • 2006
  • The Water usage is relationship which is close with the administrative cost from industrial facility. It is not easy to reduce a water usage. This research is the optimization of the waste water quantity which process waste water integration of the standard thermal power plant in system operate time. The turbine rotates by force of the steam and it produces an electricity. Demineralization Water is manufacture purity manufacturing equipment and it is supplied in power plant channel. We knew a possibility of reducing from pure control process. When it is reduced the Back Washing time, Rinsing time of the gravity filter and the activated carbon filter. Also, It is possible even from regeneration phase in Condensate Polishing Demineralization System. In addition, There is also the water which the drain of the sampling water for watching the condition of power plant process will be able to use. Integrates these processes it will be able to reduce an annual 30,000 ton degree. The research is want to use the fundamental data for the water curtailment of the power plant.

Optimal Electropolishing Condition of Austenitic Stainless Steel Specimens for Slow Strain Rate Tensile Testing (오스테나이트 스테인리스강 저속인장시험편의 최적 전해연마 특성)

  • Min-Jae Choi;Eun-Byeoul Jo;Dong-Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.457-465
    • /
    • 2023
  • Irradiation-assisted stress corrosion cracking (IASCC) is one of the main degradation mechanisms of austenitic stainless steels, which are used as reactor internal materials. Slow strain rate testing (SSRT) has been widely applied to evaluate the IASCC initiation characteristics of proton-irradiated tensile specimens. Tensile specimens require low surface roughness for micro-crack observation, and electropolishing is the most important specimen pre-treatment process used for this. In this study, optimal electropolishing conditions were examined through analyzing results of polarization experiments and surface roughness measurements after electropolishing. Corrosion cell and electropolishing equipment were fabricated for polarization tests and electropolishing experiments using SSRT specimens. The experimental parameters were electropolishing time, current density, electrolyte temperature, and stirring speed. The optimal electropolishing conditions for SSRT tensile specimens made of type 316 stainless steel were evaluated as a polishing time of 180 seconds, a current density of 0.15 A/cm2, an electrolyte temperature of 60 ℃, and a stirring speed of 200 RPM.

Progress of Composite Fabrication Technologies with the Use of Machinery

  • Choi, Byung-Keun;Kim, Yun-Hae;Ha, Jin-Cheol;Lee, Jin-Woo;Park, Jun-Mu;Park, Soo-Jeong;Moon, Kyung-Man;Chung, Won-Jee;Kim, Man-Soo
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.185-194
    • /
    • 2012
  • A Macroscopic combination of two or more distinct materials is commonly referred to as a "Composite Material", having been designed mechanically and chemically superior in function and characteristic than its individual constituent materials. Composite materials are used not only for aerospace and military, but also heavily used in boat/ship building and general composite industries which we are seeing increasingly more. Regardless of the various applications for composite materials, the industry is still limited and requires better fabrication technology and methodology in order to expand and grow. An example of this is that the majority of fabrication facilities nearby still use an antiquated wet lay-up process where fabrication still requires manual hand labor in a 3D environment impeding productivity of composite product design advancement. As an expert in the advanced composites field, I have developed fabrication skills with the use of machinery based on my past composite experience. In autumn 2011, the Korea government confirmed to fund my project. It is the development of a composite sanding machine. I began development of this semi-robotic prototype beginning in 2009. It has possibilities of replacing or augmenting the exhaustive and difficult jobs performed by human hands, such as sanding, grinding, blasting, and polishing in most often, very awkward conditions, and is also will boost productivity, improve surface quality, cut abrasive costs, eliminate vibration injuries, and protect workers from exposure to dust and airborne contamination. Ease of control and operation of the equipment in or outside of the sanding room is a key benefit to end-users. It will prove to be much more economical than normal robotics and minimize errors that commonly occur in factories. The key components and their technologies are a 360 degree rotational shoulder and a wrist that is controlled under PLC controller and joystick manual mode. Development on both of the key modules is complete and are now operational. The Korean government fund boosted my development and I expect to complete full scale development no later than 3rd quarter 2012. Even with the advantages of composite materials, there is still the need to repair or to maintain composite products with a higher level of technology. I have learned many composite repair skills on composite airframe since many composite fabrication skills including repair, requires training for non aerospace applications. The wind energy market is now requiring much larger blades in order to generate more electrical energy for wind farms. One single blade is commonly 50 meters or longer now. When a wind blade becomes damaged from external forces, on-site repair is required on the columns even under strong wind and freezing temperature conditions. In order to correctly obtain polymerization, the repair must be performed on the damaged area within a very limited time. The use of pre-impregnated glass fabric and heating silicone pad and a hot bonder acting precise heating control are surely required.