• 제목/요약/키워드: Polishing Tool

검색결과 195건 처리시간 0.031초

대구경 비구면 연마를 위한 다관절 로봇의 경로 계획 및 제어 (Path Planning and Control of an Articulated Robot for Polishing Large Aspherical Surface)

  • 김지수;이원창
    • 전기전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.1387-1392
    • /
    • 2019
  • 비구면 거울은 구형 거울보다 무게가 가볍고 성능이 우수하지만, 그 형상을 가공하고 가공 정밀도를 측정하는 것이 어렵다. 특히 위성에 사용되는 대형 조리개 비구면 미러는 높은 정밀도가 필요하고 처리하는 데 시간이 오래 걸린다. 기존의 연마 공정에는 갠트리 구조를 갖는 컴퓨터 수치 제어 공작기계가 사용되고 있으나, 자유도가 부족하여 복잡한 형상을 처리하기 어렵다는 단점이 있다. 이러한 문제를 극복하기 위해 다관절 산업용 로봇을 사용하는 연마 시스템을 개발하였다. 개발된 시스템은 공구 경로 생성 프로그램, 실시간 로봇 모니터링 및 제어 프로그램으로 구성되며, 시뮬레이션 소프트웨어와 실제 로봇 작동을 통해 개발된 시스템의 성능을 검증하였다.

연마공정에서 MR 유체의 트라이볼로지적 성질에 대한 연구 (A Study on Tribological Properties of Magneto-Rheological Fluid (MRF) in Polishing Process)

  • 이성오;장경인;민병권;이상조;석종원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.497-498
    • /
    • 2006
  • Tribological properties of a Magneto-Rheological(MR) fluid in a polishing process are studied. For this polishing process, abrasive wear model is proposed as a function of shear force, normal force and actual mean velocity of MR particles at workpiece surface. Experimental conditions are changed by varying the gap distance between workpiece and tool and the rotational speed of tool. From the experimental results, a modified Stribeck curve is obtained, and the friction coefficient turns out to have linear relationship with a modified Sommerfeld number. The validity of the wear model is supported by additional experiments performed for measuring material removal rates.

  • PDF

혼 해석을 통한 초음파 폴리싱 시스템의 개발 및 연마특성 (The Polishing Characteristics and Development of Ultrasonic Polishing System through Horn Analysis)

  • 박병규;김성청;문홍현;이찬호;강연식
    • 한국공작기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.53-60
    • /
    • 2004
  • We have developed and manufactured an experimental ultrasonic polishing machine with frequency of 20kHz at the power of vibration 1.7㎾ for effective ultrasonic polishing in processing of high hardness material. Design of the horn is performed by the FEM analysis. The following conclusions were empirically deduced through experimental results to clarify the major elements which affect the surface roughness during the ultrasonic process by following the experimental plans. The ultrasonic polishing machine has been developed in parts of structure part, ultrasonic generator, vibrator. We were able to process the high hardness material without difficulty as a result of ultrasonic polishing by utilizing the groove added step-type horn. Through analyzing by applying the experimental plans, the rotating speed of the horn was determined to be the major factor in influencing the surface roughness. In the case of ceramic, wafer, we were able to obtain good surface roughness when the feed rate and the ultrasonic output were higher. Because the load on slurry particle increases when the ultrasonic output is higher, the processed surface becomes worse in the case of optical glass.

자기연마기술을 이용한 고속절삭공구 성능향상에 관한 연구 (A Study on the Improvement of Performance of High Speed Cutting Tool using Magnetic Fluid Grinding Technique)

  • 박성률;조종래;박명균;양순철;정윤교
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1289-1293
    • /
    • 2005
  • We will improve tools performance without the change of a tools' physical shape, if we process mirror like finishing on the surface of cutting tools. Because cutting tools' shapes are very complex, the general method of polishing can't be polished. So we will apply new method of polishing which is magnetic fluid grinding technique. Magnetic fluid grinding technique can polish complex shape's workpiece by pressing the surface of workpiece with magnetic and abrasive grains in magnetic field. Therefore we developed the polishing equipment to improve the performance of cutting tools and experimented on various polishing conditions to determine the polishing conditions of cutting tools.

  • PDF

금형면의 자기연마가공 고효율화에 관한 연구 (A Study on Improving the Efficiency of Magnetic Abrasive Polishing for Die & Mold Surfaces)

  • 이용철;안자이 마사히로;나카가와 타케오
    • 한국정밀공학회지
    • /
    • 제13권6호
    • /
    • pp.59-65
    • /
    • 1996
  • There are many difficulties in automatic polishing for die & mold surfaces. Even though the process has been studied in the past 15 years, it has not been achieved yet, but by the process of actual hand work of well-skilled workers. A new magentic assisted polishing process, which is one of the potential methods for automation of surface finishing has been studied in the past 10 years by colleagues. The process has many merits, but on the other hand also has demerits, one being low efficiency of grindability by comparision with wheel polish. Therefore, some attempts were tried to improve the grindability by adopting electropolishing, ultra-high speed milling, 5-axis controlled machine etc... most recently by colleagues. This paper also aims to improve the efficiency of polishing by introducing the easily-polished shape surface cutting method equalizing the tool feed per revolution to the pick feed. This cutting method was experimentally confirmed to have sufficient grindability to polish milled surface (with $10{{\mu}m}$Rmax surface roughness) into mirror surface (with $0.4{{\mu}m}$Rmax surface roughness).

  • PDF

최적 가공 조건 선정을 위한 300mm 웨이퍼 폴리싱의 가공특성 연구 (The Study on the Machining Characteristics of 300mm Wafer Polishing for Optimal Machining Condition)

  • 원종구;이정택;이은상
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.1-6
    • /
    • 2008
  • In recent years, developments in the semiconductor and electronic industries have brought a rapid increase in the use of large size silicon wafer. For further improvement of the ultra precision surface and flatness of Si wafer necessary to high density ULSI, it is known that polishing is very important. However, most of these investigation was experiment less than 300mm diameter. Polishing is one of the important methods in manufacturing of Si wafers and in thinning of completed device wafers. This study reports the machining variables that has major influence on the characteristic of wafer polishing. It was adapted to polishing pressure, machining speed, and the slurry mix ratio, the optimum condition is selected by ultra precision wafer polishing using load cell and infrared temperature sensor. The optimum machining condition is selected a result data that use a pressure and table speed data. By using optimum condition, it achieves a ultra precision mirror like surface.

습식자기연마(WMAP)에서 입자의 구속과 가공효과에 관한 연구 (Study on Abrasive Adhesion and Polishing Effect in Wet Magnetic Abrasive Polishing)

  • 손출배;진동현;곽재섭
    • 대한기계학회논문집A
    • /
    • 제38권8호
    • /
    • pp.887-892
    • /
    • 2014
  • 일반적인 자기연마가공에서 브러쉬는 연마입자와 자성입자 그리고 약간의 절삭유가 혼합되어 형상을 갖춘다. 그러나 공구가 고속으로 회전하게 되면 대부분의 연마입자는 원심력의 증가로 공구에서부터 떨어져나간다. 이러한 현상은 가공 효율을 저하시키는 결과를 야기한다. 이러한 문제점을 해결할 수 있는 방법 중 하나는 절삭유 대신에 실리콘 겔과 같은 고점성의 물질을 사용하여 입자의 구속을 증가시키는 것이다. 연마입자의 과도한 탈락에 대응하는 또 다른 방법은 습식자기연마(WMAP)이다. 습식자기연마는 절삭유가 공작물의 표면에 충분히 공급된 상태의 자기연마를 의미한다. 본 연구에서는 습식자기연마에서 구속된 연마입자의 구속량과 표면거칠기 향상의 상관관계를 분석하였다. 그 결과 습식자기연마에서 연마입자의 구속률이 낮음에도 불구하고 표면거칠기가 더 많이 향상됨을 알 수 있었다.

연마 브러시 접촉력 산출 (Contact Force Estimation for a Polishing Brush)

  • 이병수
    • 한국정밀공학회지
    • /
    • 제27권1호
    • /
    • pp.58-63
    • /
    • 2010
  • A new contact force estimation technique is proposed. Keeping the contact force at a certain level between finishing tool and the object is essential since the quality of the finished surface is very sensitive to the contact force during the finishing process. However, the contact force measurement cannot be obtained by simply installing load cells under machine table or in the middle of tool linkage. The reason is that the weight of the machine table and the tool linkage are much heavier than the force to be measured. To that end, a method for estimating disturbance is proposed for a system that is similar to the mechanism of the finishing machine, and the same method is applied to estimate the contact force of the brush-type finishing machine. To verify the effectiveness of the proposed method, a small scale test set-up has been built and the method has been tested.

Air-Bag Head 가압식 300mm 웨이퍼 폴리싱 테이블의 가압 분포 해석 (Analysis of Contact Pressure for a 300mm Wafer Polishing Table with Air-Bag Head)

  • 노승국
    • 한국생산제조학회지
    • /
    • 제22권2호
    • /
    • pp.310-317
    • /
    • 2013
  • In this paper, the contact pressure of the wafer and polishing pad for final polishing process for 300 mm-wafer were investigated through numerical analysis using FEM tool, ANSYS. The distribution of the contact pressure is one of main parameters which affects on the flatness and surface roughness of polished wafers. Two types of polishing head, a hard type head with ceramic disk and a soft type head with air bag were considered. The effects of the deformation and initial shape of table on the contact pressure were also examined. Both heads and tables were modeled as 3D finite element model from solid model, and the material properties of polishing pads and rubber plate for the air-bag head were obtained from tensile tests. The contact pressure deviation on wafer surface was smaller with air bag head than hard type head even when the table had form errors such as convex or concave. From this 3D analysis, it could be concluded that the air-bag head has better uniformity of the contact pressure on wafer. Also, the effects of inner diameter of air bag and radial clearance between wafer and retainer were investigated as view point of contact pressure concentration on the edge of wafer.

최적 가공 조건을 위한 4인치 웨이퍼의 가공 특성에 관한 연구 (The Study on the Machining Characteristics of 4 inch Wafer for the Optimal Condition)

  • 원종구;이정택;이정훈;이은상
    • 한국공작기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.90-95
    • /
    • 2007
  • Single side final polishing is a very important role to stabilize a wafer finally before the device process on the wafer is executed. In this study, the machining variables, such as pressure, machining time, and the velocity of pad table were adopted. These parameters have the major influence on the characteristics of wafer polishing. We investigated the surface roughness changing these variables to find the optimal polishing condition. Pad, slurry, slurry quantity, and oscillation distance were set to the fixed variables. In order to reduce defects and find a stable machining condition, a hall sensor was used on the polishing process. AE sensor was attached to the polishing machine to verify optimal condition. Applying data analysis of the sensor signal, experiments were performed. We can get better surface roughness from loading the quasi static force and improving wafer-holding method.