• Title/Summary/Keyword: Policy Safety Stock Optimization

Search Result 3, Processing Time 0.018 seconds

Policy Safety Stock Cost Optimization : Xerox Consumable Supply Chain Case Study (정책적 안전재고의 비용 최적화 : 제록스 소모품 유통공급망 사례연구)

  • Suh, Eun Suk
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.5
    • /
    • pp.511-520
    • /
    • 2015
  • Inventory, cost, and the level of service are three interrelated key metrics that most supply chain organizations are striving to optimize. One way to achieve this goal is to create a simulation model to conduct sensitivity analysis and optimization on several different supply chain policies that can be implemented in actual operation. In this paper, a case of Xerox global supply chain modeling and analysis to assess several "what if" scenarios for the consumable policy safety stock is presented. The simulation model, combined with analytical cost model and optimization module, is used to optimize the policy safety stock level to achieve the lowest total value chain cost. It was shown quantitatively that the policy safety stock can be reduced, but it is offset by the inbound premium transportation cost to expedite supplies in shortage, and the outbound premium transportation cost to send supplies to customers via express shipment, requiring fine balance.

A Study on Developing an Integrated Model of Facility Location Problems and Safety Stock Optimization Problems in Supply Chain Management (공급사슬관리에서 생산입지선정 문제와 안전재고 최적화 문제의 통합모형 개발에 관한 연구)

  • Cho Geon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.1
    • /
    • pp.91-103
    • /
    • 2006
  • Given a bill of materials (BOM) tree T labeled by the breadth first search (BFS) order from node 0 to node n and a general network ${\Im}=(V,A)$, where V={1,2,...,m} is the set of production facilities and A is the set of arcs representing transportation links between any of two facilities, we assume that each node of T stands for not only a component. but also a production stage which is a possible stocking point and operates under a periodic review base-stock policy, We also assume that the random demand which can be achieved by a suitable service level only occurs at the root node 0 of T and has a normal distribution $N({\mu},{\sigma}^2)$. Then our integrated model of facility location problems and safety stock optimization problem (FLP&SSOP) is to identify both the facility locations at which partitioned subtrees of T are produced and the optimal assignment of safety stocks so that the sum of production cost, inventory holding cost, and transportation cost is minimized while meeting the pre-specified service level for the final product. In this paper, we first formulate (FLP&SSOP) as a nonlinear integer programming model and show that it can be reformulated as a 0-1 linear integer programming model with an exponential number of decision variables. We then show that the linear programming relaxation of the reformulated model has an integrality property which guarantees that it can be optimally solved by a column generation method.

A Quantitative Model for a Supply Chain Design

  • Cho, Geon;Ryu, Il;Lee, Kyoung-Jae;Park, Yi-Sook;Jung, Kyung-Ho;Kim, Do-Goan
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.311-314
    • /
    • 2005
  • Supply chain optimization is one of the most important components in the optimization of a company's value chain. This paper considers the problem of designing the supply chain for a product that is represented as an assembly bill of material (BOM). In this problem we are required to identify the locations at which different components of the product arc are produced/assembled. The objective is to minimize the overall cost, which comprises production, inventory holding and transportation costs. We assume that production locations are known and that the inventory policy is a base stock policy. We first formulate the problem as a 0-1 nonlinear integer programming model and show that it can be reformulated as a 0-1 linear integer programming model with an exponential number of decision variables.

  • PDF