• Title/Summary/Keyword: Polarizer degree

Search Result 13, Processing Time 0.018 seconds

The World's Largest 100inch TFT-LCD for HDTV and Public Display Application

  • Kang, I.B.;Jin, H.C.;Lee, S.H.;Jang, E.S.;Moon, H.M.;Oh, C.H.;Yeo, S.D.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.281-285
    • /
    • 2006
  • Recently LG.Philips LCD (hereafter "LPL") has announced the development of the world's largest 100-inch TFT-LCD with Advanced Super IPS technology. This magnificent LCD achieves the feature of a full high definition resolution $1920{\times}1080(16:9)$, 600nit brightness, 3000:1 dynamic contrast ratio, 92% color gamut, 180 degree viewing angle, and 5msec response time at all grays, targeted for HDTV and public display applications. Some unique technologies such as Cu bus line, advanced wide view polarizer, and high color gamut lamp were applied. A new stitching free technology was developed to overcome the size limitation of photo mask in both the TFT and CF processes. The size of the panel (100-inch) based on the wide format (16:9) is determined by the maximum efficiency of world's $1^{st}$ seventh generation line (glass size:$1950{\times}2250mm$) in LPL's Paju display cluster. In this paper, we will discuss the issues of 100-inch TFT-LCD.

  • PDF

Electrode-Optic Characteristics of Fringe-field driven Twisted Nematic Mode using a Liquid Crystal with Negative Dielectric Anisotropy (유전율 이방성이 음인 액정을 이용한 fringe-field driven Twisted Nematic 모드의 전기광학 특성)

  • Song, I.S.;Shin, S.S.;Song, S.H.;Kim, H.Y.;Rhee, J.M.;Lee, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1054-1057
    • /
    • 2003
  • We have studied $90^{\circ}$ twisted nematic (TN) mode driven by fringe electric field, where two polarizers are parallel each other such that the cell shows a black state before a voltage is applied. According to the studies by computer simulation for a LC with negative dielectric anisotropy, the LC twists perpendicular to the horizontal field direction of fringe electric field and the degree of tilt angle is very low, when a voltage is applied. Therefore, the new device exhibits wide viewing angle characteristic due to in-plane switching and high transmittance since the LC director aligns parallel to the polarizer axis.

  • PDF

Rendezvous Mission to Apophis: III. Polarimetry of S-type: For A Better Understanding of Surficial Evolution

  • Geem, Jooyeon;Jeong, Minsup;Jin, Sunho;Sim, Chae Kyung;Bach, Yoonsoo P.;Ishiguro, Masateru;Kwon, Yuna G.;Moon, Hong-Kyu;Choi, Young-Jun;Kim, Myung-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.57.4-58
    • /
    • 2021
  • Asteroids have undergone various processes such as impacts, space weathering, and thermal evolution. Because they expose their surfaces to space without atmosphere, these evolutional processes have been recorded directly on their surfaces. The remote-sensing observations have been conducted to reveal these evolutional histories of the target asteroids. For example, crater and boulder distributions are unambiguous evidence for past nondestructive impacts with other celestial bodies. Multiband and spectroscopic observations have revealed space-weathering history (as well as compositions). Whereas most physical quantities have been examined intensively using spacecraft and telescopes, only a little has been studied on "the grain size". It is one of the fundamental physical quantities for diagnosing the collisional and thermal history of asteroids. Our group has conducted polarimetric research of asteroids (as well as Moon [1]) to determine the particle size and further investigate the evolutional histories of target asteroids [2],[3]. For example, the existence of regolith on an S-type asteroid, Toutatis, was suggested almost twenty years before space exploration [4]. Moreover, we reported that near-Sun asteroids indicate a signature of submillimeter grains, which could be created by a thermal sintering process by solar radiation [5]. However, it is important to note that in-situ polarimetry has not been reported on the asteroid surface, although the Korean Lunar Exploration Program aims to do polarimetry on the lunar surface [6]. Therefore, it is expected that the polarizer mounted on the Korean Apophis spacecraft can make the first estimate of the grain size and its regional variation over the Apophis surface. In this presentation, we outline research of S-type asteroid surfaces through remote-sensing observations and consider the role of polarimetry. Based on this review, we consider the purpose, potentiality, and strategy of the polarimetry using the onboard device for the Apophis spacecraft. We will report a possible polarization phase curve of Apophis estimated from ordinary chondrites and past observational data of S-type asteroids, taking account of the space weathering effect. Based on this estimation, we will consider the strategy of how to determine the particle size (and space weathering degree) of the Apophis surface. We will also mention the detectability of dust hovering on the surface.

  • PDF