• Title/Summary/Keyword: Polarized spectroscopy

Search Result 73, Processing Time 0.025 seconds

Sequence Dependent Binding Modes of the ΔΔ- and ΛΛ-binuclear Ru(II) Complexes to poly[d(G-C)2] and poly[d(A-T)2]

  • Chitrapriya, Nataraj;Kim, Raeyeong;Jang, Yoon Jung;Cho, Dae Won;Han, Sung Wook;Kim, Seog K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2117-2124
    • /
    • 2013
  • The binding properties and sequence selectivities of ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ (bip = 4,4'-biphenylene (imidazo [4,4-f][1,10]phenanthroline) complexes with $poly[d(A-T)_2]$ and $poly[d(G-C)_2]$ were investigated using conventional spectroscopic methods. When bound to $poly[d(A-T)_2]$, a large positive circular dichroism (CD) spectrum was induced in absorption region of the bridging moiety for both the ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complexes, which suggested that the bridging moiety sits in the minor groove of the polynucleotide. As luminescence intensity increased, decay times became longer and complexes were well-protected from the negatively charged iodide quencher compared to that in the absence of $poly[d(A-T)_2]$. These luminescence measurements indicated that Ru(II) enantiomers were in a less polar environment compared to that in water and supported by minor groove binding. An angle of $45^{\circ}$ between the molecular plane of the bridging moiety of the ${\Delta}{\Delta}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complex and the local DNA helix axis calculated from reduced linear dichroism ($LD^r$) spectrum further supported the minor groove binding mode. In the case of ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complex, this angle was $55^{\circ}$, suggesting a tilt of DNA stem near the binding site and bridging moiety sit in the minor groove of the $poly[d(A-T)_2]$. In contrast, neither ${\Delta}{\Delta}$-nor ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complex produced significant CD or $LD^r$ signal in the absorption region of the bridging moiety. Luminescence measurements revealed that both the ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complexes were partially accessible to the $I^-$ quencher. Furthermore, decay times became shorter when bis-Ru(II) complexes bound to $poly[d(G-C)_2]$. These observations suggest that both the ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complexes bind at the surface of $poly[d(G-C)_2]$, probably electrostatically to phosphate group. The results indicate that ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ are able to discriminate between AT and GC base pairs.

A Photoreduction of Phenanthrenequinone by ESR and TRESR Spectroscopy(I)-Solvent Effect on Hyperfine-Splitting Constant of Radicals (ESR 및 TRESR 分光法에 의한 Phenanthrenequinone의 光環元反應(I). Radical의 超微細分離常數에 미치는 溶媒效果)

  • Daeil Hong;Chang Jin Kim
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.3
    • /
    • pp.271-278
    • /
    • 1993
  • The hyperfine splitting constants of phenanthrenequinone anion radical have been determined for the solution of triethylamine with 2-propanol, 2-pentanol or benzene by cwESR and time-resolved ESR methods. The radical anion was produced by photolysis using a pulsed excimer laser. The resulting hyperfine splitting constant A$_{H1}$ and A$_{H2}$ are 1.662, 0.378 in 2-propanol, 1.602, 0.361 in 2-pentanol and 1.518 in benzene respectively. The hyperfine coupling constants decrease with the decreasing of polarity of the mixed solvent. The tendency of the variation depends on the polarity of the solvents, thus, making it in impossible to observe the magnetic equivalent proton in a mixed solvent of nonpolar benzene. Particularly, time-resolved ESR spectrum of triethylamine radical (TEA${\cdot}$) has been observed in 0.15∼0.30 ${\mu}s$ from the solvent of 3 : 1 with 2-pentanol and triethylamine. Thus from the results of solvent effect, we can suggest that the identification of the unstable short-lived spin polarized phenanthrenequinone anion radical(*PQ${\cdot}^-$) proceed through photochemistry.

  • PDF

A Study on Smalt Pigments Used in Large Buddhist Paintings in the 18th and 19th Centuries (18~19세기 대형 불화에 사용된 회청(Smalt) 안료에 관한 연구)

  • YUN, Jihyeon;KIM, Sojin;KIM, Gyuho
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.3
    • /
    • pp.120-129
    • /
    • 2022
  • The purpose of this study is to analyze the chemical composition of smalt pigments used in 10 large Buddhist paintings in the Joseon Dynasty using energy dispersive X-ray spectroscopy, and to clarify the material and characteristics by observing morphological characteristics using polarized light microscopy and a scanning electron microscope. Through chemical composition analysis, the smalt of all 10 large Buddhist paintings is judged to be potash glass using SiO2 as a former and K2O as a flux. In addition to the components related to cobalt ore used as a colorant, the paintings were found to contain high levels of As2O3, BaO, and PbO. The smalt particles did not have specific forms, and were blue in color, with various chromaticity. In some particles, conchoidal fracture, spherical bubbles, and impurities were observed. Through backscattered electron images, it was found that the smalt from paintings produced in the early 18th century AD had a high level of As, but the smalt from paintings produced from the mid-18th century AD onwards exhibited various contrast differences from particle to particle, and there was smalt with high levels of As, Ba, and Pb. Through the above results, the large Buddhist paintings in the Joseon Dynasty are divided into three smalt types. Type A is a type with high As2O3, type B is a type with high BaO, and type C is a type with high PbO. Looking at the three types of smalt pigments by the period of production, although some in-between periods were not detected, type A was confirmed to have been used from 1705 to 1808, while type B and type C were shown to have appeared in 1750 and used until 1808. This reveals that only one type of smalt was used until the early 18th century AD, and from the middle of the 18th century AD, several types of smalt were mixed and used in one large Buddhist painting. Studies such as this research are expected to provide insights into the characteristics of the smalt pigments used to produce large Buddhist paintings at the time.