• Title/Summary/Keyword: Polarization of water

Search Result 356, Processing Time 0.026 seconds

Evaluation of water permeability of forward osmosis membranes using osmotically driven membrane test (랩스케일 정삼투실험을 통한 정삼투막의 수투과도 평가)

  • Lee, Junseo;Kim, Suhan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.4
    • /
    • pp.417-425
    • /
    • 2016
  • Desalination is a key technology to overcome water shortage problem in a near future. High energy consumption is an Achilles' heel in desalination technology. Osmotically driven membrane processes like forward osmosis(FO) was introduced to address this energy issue. Characterizing membrane properties such as water permeability(A), salt permeability(B), and the resistance to salt diffusion within the support layer($K_{ICP}$) are very important to predict the performance of scaled-up FO processes. Currently, most of researches reported that the water permeability of FO membrane was measured by reverse osmosis(RO) type test. Permeating direction of RO and FO are different and RO test needs hydraulic pressure so that several problems can be occurred(i.e. membrane deformation, compaction and effect of concentration polarization). This study focuses on measuring water permeability of FO membrane by FO type test results in various experimental conditions. A statistical approach was developed to evaluate the three FO membrane properties(A, B, and $K_{ICP}$) and it predicted test result by the internal and external concentration polarization model.

The Study on the Corrosion Characteristics of Al-Alloy Shell for Cooler (알루미늄합금 원통냉각기의 부식 특성에 관한 연구)

  • 임우조;김성진;윤병두
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.2
    • /
    • pp.152-157
    • /
    • 2003
  • Most Recently, with rapid development in marine industries such as marine structures and ship, there occurs much interest in the study of corrosion characteristics which play an important role in design of cooling water system like heat-exchanger. Especially, as operating environment of fresh cooling water system in vessels is acidified, this system is seriously corroded. In this study, to study on the corrosion characteristics of Al-alloy shell for cooler, the electrochemical polarization test of materials for the marine fresh water cooler such as Al-alloy, Cu and naval brass was carried out in fresh water. And thus the polarization resistance and anodic polarization behavior of Al-alloy, Cu and naval brass are investigated. Also, galvanic corrosion characteristics of Al-alloy coupled with Cu and naval brass is considered. The main results obtained are as follows ; (1) The current density of corrosion is high in order of Al-alloy > naval brass > Cu (2) As anodic potential increases, the corrosion resistance of naval brass is better than that of Cu. (3) The galvanic corrosion of Al-alloy coupled with Cu and naval brass is activated than corrosion of Al-alloy.

Effect of the Specific Resistance of Water on Corrosion Characteristics of STS 304 for Gas Boiler (가스보일러용 STS 304의 부식특성에 미치는 용수의 비저항의 영향)

  • Lim, Uh-Joh;Kim, Hwan-Sik;Yun, Byoung-Du
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.19 no.3
    • /
    • pp.323-328
    • /
    • 2007
  • This paper was studied on the effect of the specific resistance of water on corrosion characteristics of STS 304 for gas boiler. The electrochemical polarization test of STS 304 for gas boiler was carried out. And the polarization resistance, uniform corrosion, corrosion behavior by impressed potential and corrosion sensitivity of STS 304 with specific resistance were considered. The main results are as following: 1) With being low the specific resistance of water, the polarization resistance and corrosion potential of STS 304 decreases, while corrosion current density increases. 2) Under constant impressed potential, the corrosion sensitivity of STS 304 is large with being low the specific resistance due to synergy effect of Cl ion.

Detection of Water Cloud Microphysical Properties Using Multi-scattering Polarization Lidar

  • Xie, Jiaming;Huang, Xingyou;Bu, Lingbing;Zhang, Hengheng;Mustafa, Farhan;Chu, Chenxi
    • Current Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.174-185
    • /
    • 2020
  • Multiscattering occurs when a laser transmits into dense atmosphere targets (e.g. fogs, smoke or clouds), which can cause depolarization effects even though the scattering particles are spherical. In addition, multiscattering effects have additional information about microphysical properties of scatterers. Thus, multiscattering can be utilized to study the microphysical properties of the liquid water cloud. In this paper, a Monte Carlo method was used to simulate multi-scattering transmission properties of Lidar signals in the cloud. The results showed the slope of the degree of linear polarization (SLDLP) can be used to invert the extinction coefficient, and then the cloud effective size (CES) and the liquid water content (LWC) may be easily obtained by using the extinction coefficient and saturation of the degree of linear polarization (SADLP). Based on calculation results, a microphysical properties inversion method for a liquid cloud was presented. An innovative multiscattering polarization Lidar (MSPL) system was constructed to measure the LWC and CES of the liquid cloud, and a new method based on the polarization splitting ratio of the Polarization Beam Splitter (PBS) was developed to calibrate the polarization channels of MSPL. By analyzing the typical observation data of MSPL observation in the northern suburbs of Nanjing, China, the LWC and CES of the liquid water cloud were obtained. Comparisons between the results from the MSPL, MODIS and the Microwave radar data showed that, the microphysical properties of liquid cloud could be retrieved by combining our MSPL and the inversion method.

Forward Osmosis Based Seawater Desalination using Liquid Fertilizer as Draw Solution (액상 비료를 유도 용액으로 사용하는 정삼투 기반의 해수 담수화)

  • Park, Seong-Jik;An, Hee-Kyung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.2
    • /
    • pp.21-27
    • /
    • 2013
  • The present study explored the way to desalinate seawater for agricultural irrigation using forward osmosis (FO) process using liquid fertilizer as draw solution. FO experiments were performed in a cross flow mode using flat sheet FO membrane. The effect of membrane orientation, flow rate, and draw solution concentration on the performance of forward osmosis was investigated by measuring water flux of forward osmosis membrane. The water flux when the draw solution was placed against the membrane active layer was lower than the water flux when the feed solution was placed against the membrane active layer. This results indicated that the decrease of effective osmotic pressure by dilutive internal concentration polarization was less than that by concentrative internal concentration polarization. Increasing flow rate from 66.7 to 133.1 $cm^3$/min resulted in increase of the water flux when the membrane active layer orient to draw solution and feed solution, respectively. The reduction of resistance to water flow increased water flux at higher flow rate. The water flux of FO membrane increased with increasing draw solution concentration from 10000 to 30000 mg/L. The water flux for $KH_2PO_4$ draw solution was similar to that for commercial fertilizer. Optimization of FO process would contribute to economically desalinate brackish water for agricultural use.

Improvement of Corrosion Resistance for Copper Tube by Electrochemical Passivation (전기화학적 부동태화에 의한 동관의 내식성 개선 연구)

  • Min, Sung-Ki;Kim, Kyung-Tae;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.125-130
    • /
    • 2011
  • This study was performed to improve the corrosion resistance and the stability of passive film on copper tube by potentiostatic polarization method in synthetic tap water. Formation of passive film was carried out by anodic potentiostatic polarization at various passivation potentials and passivation times in 0.1 M NaOH solution. Stability of passive film and corrosion resistance was evaluated by self-activation time, ${\tau}_0$ from passive state to active state on open-circuit state in 0.1 M NaOH solution. Addition of polyphosphate in NaOH solution prolonged the self-activation time and improved the corrosion resistance, and the addition of 5 ppm polyphosphate was most effective. It was also observed that better corrosion resistance was obtained by potentiostatic polarization at 1.0 V (vs. SCE) than at any other passivation potentials. Passivated copper tube showed perfect corrosion resistance for the immersion test in synthetic tap water showing that the anodic potentiostatic polarization treatment in 0.1 M NaOH with 5 ppm polyphosphate solution would be effective in improving the corrosion resistance and preventing the blue water problem.

Runoff Analysis Using Dual Polarization RADAR and Distributed Model (이중편파 레이더강우와 분포형 모형을 이용한 유출해석)

  • Jeong, Jiyoung;Yu, Myungsu;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.801-812
    • /
    • 2014
  • In this study, average rainfall of basin was estimated and compared with that obtained from Biseulsan dual polarization RADAR. And the runoffs are estimated using Vflo distribution model for Habcheon reservoir basin and Huicheon basin. In the rainfall estimation using dual polarization RADAR, the rainfall was estimated by using the specific phase difference and differential reflectivity of dual polarization RADAR variables. As a result, for all events rainfall estimation using dual polarization RADAR has the closest value to the gauge rainfall in terms of the peak rainfall and total rainfall. Also, runoff simulation results from dual polarization RADAR show the better results. It is concluded that the method using dual polarization radar can improve the accuracy more than a single polarization radar using only horizontal reflectivity.

The Effect of Temperature on Corrosion of Absorption Refrigeration Systems Using $LiBr-H_2O$ Working Fluids ($LiBr-H_2O$계 흡수식냉동기의 부식에 미치는 온도의 영향)

  • 임우조;정기철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.125-131
    • /
    • 2002
  • This paper was studied on the effect of temperature on corrosion of absorption refrigeration systems using $LiBr-H_2O$ working fluids. In the fresh water and 62 % lithium bromide solution at $70^{\circ}C$, polarization test of SS 400, Cu(C1220T-OL) and Al-Ni bronze was carried out. And polarization behavior, polarization resistance characteristics, corrosion rate(mmpy) and corrosion sensitivity of materials forming absorption refrigeration systems was considered. The main results are as following: (1) As the experimental temperature increase, the change of corrosion rate of Al-Ni bronze become duller than SS 400 and Cu in 62% lithium bromide solution. (2) According as corrosion environment is changed from fresh water to 62% lithium bromide solution, potential change of Cu and Al-Ni bronze become less noble than SS 400. (3) The corrosion sensitivity of Al-Ni bronze was duller than that of Cu and SS 400 in 62% LiBr solution.

Electrochemical Corrosion Damage Characteristics of Alumium Alloy and Stainless Steel with Sea Water Concentration (알루미늄 합금 및 스테인리스강의 해수 농도 변화에 따른 전기화학적 부식 손상 특성)

  • Park, Il-Cho;Kim, Young-Bok;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.4
    • /
    • pp.259-265
    • /
    • 2017
  • 5000 series aluminium alloys and austenitic stainless steels have excellent corrosion resistance and sufficient strength, which are widely used as materials for marine equipment and their parts in the marine environment. The corrosion characteristics of materials are important factors for selecting the appropriate material due to fluid component changes in the estuarine and coastal areas where seawater and fresh water are mixed. Therefore, for 5083 Al alloy, STS304 and STS316L widely used in the marine environment, anodic polarization experiments were performed to compare the corrosion damage characteristics of each material by three kinds of solutions of 100 % tap water, 50 % tap water+50 % natural seawater and 100 % natural seawater. As a result of the anodic polarization experiments, aluminum alloy (5083) caused locally corrosion on the surface in the tap water, and corrosion damage occurred all over the surface when the seawater was included. Stainless steels (STS304 and STS316L) presented almost no corrosion damage in tap water, but they grew pitting corrosion damage with increasing seawater concentration. STS316L showed better corrosion resistance than STS304.

Influence of Ca-Si Addition on Anodic Polarization Chgaraqcteristics of Al-Zn-In Anodes (海水中 Al-Zn-In 合金陽極의 分極特性에 미치는 Ca-Si 添加의 影響)

  • Seo, Chang-Je
    • Journal of the Korean institute of surface engineering
    • /
    • v.12 no.1
    • /
    • pp.3-10
    • /
    • 1979
  • Many excellent Al-Zn-In anode have been developed up to the present. But for the purpose of the better performance of Al-Zn-In anodes in sea water the effect of calcium silicon addition on anodic polarization and current capacity of Al-Zn-In anodes was measured and analysed in sea water and artificial sea water. The results and conclusions obtained are summarized as follows. 1) Being compared with Al-Zn-In anodes, Al-Zn-In anodes containing 0.05% calcium silicon had superior characteristics in both anodic polarization and current capacity. 2) Corrosion patterns of the anodes containing calcium silicon were much more uniform than those of Al-Zn-In anodes. 3) In this experiment the most useful anode was Al-4% Zn-0.03% In-0.05% (Ca-Si). It had a capacity of 2.60Amp-hr of current/g and a voltage of 1.13(SCE reference) at anodic current density 1,000 4{\mu}A/cm^2$.

  • PDF