• Title/Summary/Keyword: Polarization Response

Search Result 140, Processing Time 0.039 seconds

Modification of the electrical parameters of CNT-doped deformed-helix ferro-electric liquid crystals

  • Sood, Nitin;Khosla, Samriti;Singh, Darshan;Bawa, S.S.
    • Journal of Information Display
    • /
    • v.13 no.4
    • /
    • pp.145-149
    • /
    • 2012
  • Liquid crystals are useful for a wide range of applications due to their exceptional properties. Doping of liquid crystals with carbon nanotubes (CNTs), even at very low concentrations, produces a detectable effect on the liquid crystal (LC) properties that can be very attractive for various functions. In this study, an attempt was made to investigate the effect of CNTs on the electrical properties of a short-pitch and high-spontaneous-polarization ferro-electric LC mixture, FLC-6304, at different temperatures. The inclusion of the CNTs significantly reduced the polarization at temperatures well within the $SmC^*$ phase, but the effect was gradually reversed as the transition temperature was approached. The insertion of the CNTs also reduced the response time and the rotational viscosity of the FLC mixture, which is highly desirable in the LCD industry.

A General Performance of PSS-LCDs

  • Mochizuki, Akihiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.91-96
    • /
    • 2005
  • In this paper, a general performance of the PSS-LCD or Polarization Shielded Smectic Liquid Crystal Display is discussed. This smectic base LCD does not use any spontaneous polarization, but uses induced polarization just same with current nematic base LCDs. Specific initial molecular alignment as well as specific cell design realizes extremely fast optical response speed with native wide viewing angle. Moreover, this performance is provided by full compatible electronics for current conventional LCDs. A general performance of the PSS-LCD is introduced here.

  • PDF

A Study on the Design of Cross-Polarization Interference Canceler for Digital Radio Relay System with Co-Channel Dual Polarization (동일 채널 이중편파를 적용하는 디지털 무선 중계장치의 직교편파간섭제거기 설계에 관한 연구)

  • 서경환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.3
    • /
    • pp.225-236
    • /
    • 2002
  • In this paper, to counteract a cross-polarization interference caused by co-channel dual polarization technique of digital radio relay system(DRRS), we analyze the theoretical model and digital design of cross-polarization interference canceller(XPIC). In addition a complex adaptive time domain equalizer(ATDE) is designed using a finite impulse response filter, and the structure of XPIC and its control method are also illustrated including ATDE. Our computer simulation shows that about 25 dB signature and more than 23 dB XPIC improvement factor can be obtained with XPIC and ATDE. In order to verify the operation of designed XPIC, we review the simulated results in view of tap number, algorithm convergence, system signature, and XPlC improvement factor in connection with 64-QAM DRRS with co-channel dual polarization.

Computation of the Time-domain Induced Polarization Response Based on Cole-Cole Model (Cole-Cole 모델에 대한 시간영역 유도분극 반응의 계산)

  • Kim, Yeon-Jung;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.158-163
    • /
    • 2021
  • The frequency-domain induced polarization (IP) response based on Cole-Cole model is expressed as a simple equation in close form. However, it is difficult to compute the time-domain IP response based on Cole-Cole model or any other relaxation model because it cannot be written in closed form. In this study, using numerical experiments, we compared three numerical methods for calculating the time-domain IP response of the Cole-Cole model asymptotically: series expansion, digital linear filtering and Fourier transform. The series expansion method is inadequately accurate for certain time values and converges very slowly. A digital linear filter specially designed to calculate the time-domain IP response does not present the desired accuracy, especially at later times. The Fourier transform method can overcome the abovementioned problems and present the time-domain IP response with adequate accuracy for all time values, even though more computing time is required.

Development of Optical Fiber Hydrogen Sensor Based on Polarization-Diversity Loop Configuration Using Pd-Coated Polarization-Maintaining Fiber (팔라듐 코팅된 편광 유지 광섬유를 이용한 편광 상이 배치 구조 기반 광섬유 수소 센서의 개발)

  • Noh, Tae-Kyu;Kim, Young-Ho;Lee, Yong-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.1-6
    • /
    • 2013
  • In this study, we propose a fiber-optic hydrogen sensor using a polarization-diversity loop configuration composed of a polarization beam splitter, two quarter-wave plates, and a polarization-maintaining fiber coated with palladium whose thickness is ~400nm. One transmission dip of the output interference spectrum of the proposed sensor, chosen as a sensor indicator, was observed to spectrally shift with the increase of the hydrogen concentration, and the sensing indicator showed a wavelength shift of ~2.48nm at a hydrogen concentration of 4%. Except for a hydrogen concentration of 4%, the response time of the proposed sensor was measured as less than 12.5s and did not show significant dependence on the hydrogen concentration. In particular, the proposed fiber hydrogen sensor is more durable and highly resistant to external stress applied on a transverse axis of an optical fiber, compared with other hydrogen sensors based on side-polished fibers or fiber gratings.

NEUTRON THREE-AXIS SPECTROMETRY AT THE ADVENT OF 21ST CENTURY

  • Kulda Jiri
    • Nuclear Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.433-436
    • /
    • 2006
  • The implementation of multiplexing techniques combined with advances in neutron optics make the neutron three-axis spectrometers (TAS) an efficient tool to map inelastic response from single crystals over momentum transfer ranges comparable to the size of a single Brillouin zone. Thanks to recent progress in polarization techniques such experiments can be combined relatively easily with neutron polarization analysis, which does not only provide unambiguous separation of response corresponding to structural and magnetic degrees of freedom, but permits a quantitative analysis of the magnetic response anisotropy, often of crucial importance to test theoretical predictions. In the forthcoming decade we therefore expect a further development of the complementary use, rather than competition, of the reactor-based TAS's with time-of-flight (TOF) instruments for single crystal spectroscopy at the existing (ISIS) as well as at the newly built (SNS, J-PARK) pulsed sources.

Finite Element Modeling of Polarization Switching in Electro-Mechanically Coupled Materials (전기-기계적으로 연성된 재료의 분극역전 거동에 대한 유한요소 모델링)

  • Kim, Sang-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1697-1704
    • /
    • 2001
  • A finite element model for polarization switching in electro-mechanically coupled materials is proposed and applied to predict the switching behavior of a two-dimensional ferroelectric ceramic. A complicated micro-structure existing in the material is modeled as il continuum body and a simple 3 node triangle finite element with nodal displacement and voltage degrees of freedom is used for a finite element analysis. The elements use nonlinear constitutive equations, switching criterion and kinetic relation, fur representation of material response at strong electric and stress fields. The polarization state of the material is represented by internal variables in each element, which are updated at each simulation step based on the proposed constitutive equations. The model reproduces strain and electric displacement hysteresis loops observed in the material.

Optical Sensor Based on Evanescent Field Coupling Between Side-Polished Polarization Maintaining Fiber and Planar Waveguide Coupler (측면 연마 편광 유지 광섬유와 평면 도파로 사이의 소산장 결합을 이용한 광센서)

  • Kim, Kwang-Taek;HwangBo, Sueng;Kang, Yong-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.207-212
    • /
    • 2004
  • We have investigated the optical characteristics of a directional coupler made of a side-polished polarization maintaining fiber in contact with a multimode planar waveguide and its applications as sensors. A device structural condition to achieve the polarization insensitive wavelength response has been presented. The fabricated devices revealed a superior immunity to the bending and the deformation of PM fibers in the input section. It is experimentally shown that the proposed device is suitable for a remote fiber sensor.

Dynamic Pyroelectric Properties and Their Frequency Dependences of $Pb(Zr_xTi_{1-x})O_3$ Ceramics with Various Compositions (성분에 따른 $Pb(Zr_xTi_{1-x})O_3$세라믹스의 Dynamic 초전 특성과 그 주파수 의존성)

  • 민경진;윤영섭
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.609-612
    • /
    • 1998
  • Pyroelectric properties of rhombohedral $Pb(ZrxTi_1-x)O_3ceramics$ with various Zr/Ti ratios of 84/16, 87/13, 90/10, and 93/7 are investigated using dynamic method. The response characteristics of PZT samples are examined by considering frequency dispersion. Since the reorientation of the grain does not the influence on the increase of frequency at low frequency (2~200Hz), the maximum pyroelectric response can be obtained with the change of spontaneous polarization. However, the pyroelectric response of PZT samples could be reduced as the spontaneous polarization decreases due to the restrain of the reorientation of the grain with the increasing of requency at high frequency (200~2000Hz). We have obtained the good pyroelectric response in the PZT sample having 84/16 Zr/Ti ratio, then the pyroelectric coefficient (${\gamma}$) and the figure of merit (FV) were $17.3nC/\textrm{cm}^2K$ and 2.28$\times$10-11Ccm/J, respectively. The noise equivalent power (NEP), the detectivity (D*) were 1.21$\times$10-7W/Hz$\frac{1}{2}$ and 8.26$\times$106cmHz$\frac{1}{2}$/W, respectively.

  • PDF

Measuring electrical parameters of ferroelectric liquid crystals using universal current reversal method

  • Sood, N.;Khosla, S.;Singh, D.;Bawa, S.S.
    • Journal of Information Display
    • /
    • v.12 no.3
    • /
    • pp.129-134
    • /
    • 2011
  • The universal current reversal method is used for the simultaneous measurement of response time (${\tau}$), azimuthal angle (${\varphi}_o$), spontaneous polarization ($P_S$), and rotational viscosity (${\gamma}_{\varphi}$) of two ferroelectric liquid crystals (FLCs). The application of AC field in FLCs results in reorientational current, which is further analyzed to obtain various parameters. The variation in the parameters with temperature follows the typical trend predicted by the theory. The theoretical curve fits well into the experimental data. Its comparison with traditional current reversal method is confirmed to address certain limitations of that method.