• Title/Summary/Keyword: Polarimetric fiber-optic current sensor

Search Result 6, Processing Time 0.025 seconds

Polarimetric fiber-optic current sensor system using a twisted fiber sensing coil (비틀린 광섬유 센서코일을 이용한 편광분석형 광섬유 전류센서)

  • 송민호;김기혁
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.135-141
    • /
    • 2004
  • We developed a polarimetric fiber-optic current sensor system for protective relaying usage. A fiber sensing coil that consisted of a length of twisted fiber and a FRM (Faraday rotator mirror) was used in order to suppress the linear birefringence effect. From the experiments with various sensing coil configurations and environmental conditions, the proposed current sensor system showed feasibility of suppressing environmental noises, and the obtained measurement stability was less than $\pm$3% at rated primary current.

Polarimetric Fiber-optic Current Transformer using a Spun Fiber (스펀 광섬유를 이용한 편광 분석형 광섬유 전류센서)

  • Park, Hyong-Jun;Kim, Hyun-Jin;Song, Min-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.1
    • /
    • pp.73-78
    • /
    • 2008
  • A polarimetric fiber-optic CT has been developed by using a sensing coil made of a length of sun fiber. A Faraday rotator mirror is attached to the end of the sensor coil to double the sensitivity and to suppress the residual linear birefringence effect. From the current measurements, the linear error no more than ${\pm}2[%]$ was obtained. The output of spun fiber sensor coil was compared with those of the twisted- and the flint glass fiber's, and it fumed out to almost 50 times, 2 times more sensitive, respectively.

Stabilization of Fiber-optic Current Sensor Using a Faraday Rotator Mirror (Faraday 반사경을 이용한 광섬유형 전류센서의 안정화)

  • 김기혁;송민호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.72-76
    • /
    • 2003
  • We developed a polarimetric fiber-optic current sensor using a length of twisted fiber and a Faraday rotator mirror which was used to suppress the linear birefringence effect. A gold coated mirror was also used as the sensor coil reflector, and the results were compared with the case of FRM. From the experimental results, it is clear that the FRM greatly enhances the stability of the fiber optic current sensor output..

A Study on the Fabrication of Polarimetric Fiber Optic Current Sensor (편광측정법에 의한 광섬유 전류 센서 제작에 관한 연구)

  • Jang, Nam-Young;Chio, Pyung-Suk;Eun, Jae-Jeong;Park, Hae-Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.6
    • /
    • pp.33-41
    • /
    • 2004
  • In this paper, a polarimetric fiber optic current sensor(P-FOCS) is experimented and fabricated, and then a possibility to the commercial utilization of the P-FOCS is also investigated. The P-FOCS measures an applied current by a Faraday rotation linearly proportional to a magnetic field generated by the applied current. The bending-induced linear birefringence in the sensing fiber is minimized by using the low birefringent fiber. Also, all fiber-optic components are used to avoid optical losses coming from the use of bulk components. A signal processing circuit is constructed and used to eliminate the effects of intensity variations in the output signal due to losses coming from misalignments of components such as fiber connectors. Using the optical source of 632.8nm wavelength, Faraday rotation is measured by passing through the sensing fiber within the solenoid of about 1500 turns which is equivalent to a current source of about 7500A. In the range of 1000A to 7500A, the measurement error for linearity is within about 1.5%.

A Study on the Current Measurement Using birefringence Fiber (복굴절 광섬유를 이용한 전류측정에 관한 연구)

  • Jang Nam-Young;Choi Pyung-Suk;Eun Jae-Jeong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.2
    • /
    • pp.59-66
    • /
    • 2005
  • Accuracy of current measurement in fiber optic current sensor(FOCS), especially, unidirectional polarimetric fiber optic current sensor(PFOCS) is affected by the environment perturbations such as acoustic vibrations changes to the sensing fiber, and intrinsic perturbations such as the bending fiber that the sensing fiber wound around a current carrying wire. The perturbations affect the birefringence properties of sensing fiber in sensor head and cause false current readings. Thus, using compensation technique, reciprocal PFOCS, for unidirectional PFOCS the perturbations are suppressed. In this paper, we carried out the numerical analysis of performance in reciprocal PFOCS including the degree of polarization error, and false current of environmental and intrinsic perturbations on the sensing fiber. Also, we compared the effect of mirror with the faraday rotation mirror(FRM) in reciprocal PFOCS configuration. And the different optical source's wavelengths, 633nm and 1300nm is used. In the results, at 633nm, using mirror and FRM, the degree of polarization error is calculated to $2.3\%$ and $0.0196\%$, respectively. At $1300{\cal}nm$ using mirror and FRM the degree of polarization error is calculated to $9.97\%$ and $0.0196\%$, respectively. Also, compared with false current, the results is calculated to $9.82{\times}10^{-9}A$ and $1.4{\times}10^{-17}A$, respectively, and show that the reciprocal PFOCS is more robust configuration than unidiretionnal PFOCS for environmental and intrinsic perturbations.

  • PDF

Fiber-Optic Current Transformer for the Over Current Protection Relay (과전류 보호계전기용 광섬유 전류센서)

  • Song, Min-Ho;Yang, Chang-Soon;Ahn, Seong-Joon;Park, Byoung-Seok;Lee, Byoung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.542-548
    • /
    • 2001
  • A robust, accurate, broad-band, alternating current sensor using fiber-optics is being developed as a part of optical over current protection relay system. The sensor uses the Faraday effect in optical fiber and polarimetric measurements tc sense electrical current. The current sensing coil consists of a length of twisted optical fiber and Faraday rotator mirror to suppress the linear birefringence effect. Due to its single-ended closed path structure, it can not only be easily installed to the target with great isolation from other fields in the vicinity, but the sensitivity can be increased by using multiple turns. This paper reports on the theoretical backgrounds of the sensor design and the preliminary experimental results.

  • PDF