• Title/Summary/Keyword: Polarimetric SAR data

Search Result 51, Processing Time 0.025 seconds

On the Spatial and Temporal Variability of L-band Polarimetric SAR Observations of Permafrost Environment in Central Yakutia

  • Park, Sang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.47-60
    • /
    • 2017
  • The permafrost active layer plays an important role in permafrost dynamics. Ecological patterns, processes, and water and ice contents in the active layer are spatially and temporally complex depending on landscape heterogeneity and local-scale variations in hydrological processes. Although there has been emerging interest in the application of optical remote sensing techniques to permafrost environments, optical sensors are significantly limited in accessing information on near surface geo-cryological conditions. The primary objective of this study was to investigate capability of L-band SAR data for monitoring spatio-temporal variability of permafrost ecosystems and underlying soil conditions. This study exploits information from different polarimetric SAR observables in relation to permafrost environmental conditions. Experimental results show that each polarimetric radar observable conveys different information on permafrost environments. In the case of the dual-pol mode, the radar observables consist of two backscattering powers and one correlation coefficient between polarimetric channels. Among them, the dual-pol scattering powers are highly sensitive to freeze/thaw transition and can discriminate grasslands or ponds in thermokarst area from other permafrost ecosystems. However, it is difficult to identify the ground conditions with dual-pol observables. Additional backscattering powers and correlation coefficients obtained from quad-pol mode help understanding seasonal variations ofradar scattering and assessing geo-cryological information on soil layers. In particular, co-pol coherences atHV-basis and circular-basis were found to be very usefultools for mapping and monitoring near surface soil properties.

A SCATTERING MECHANISM IN OYSTER FARM BY POLARIMETRIC AND JERS-l DATA

  • Lee Seung-Kuk;Won Joong Sun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.538-541
    • /
    • 2005
  • Tidal flats develop along the south coast ofthe Korean peninsula. These areas are famous for sea farming. Specially, strong and coherent radar backscattering signals are observed over oyster sea farms that consist of artificial structures. Tide height in oyster farm is possible to measure by using interferometric phase and intensity of SAR data. It is assumed that the radar signals from oyster farm could be considered as double-bouncing returns by vertical and horizontal bars. But, detailed backscattering mechanism and polarimetric characteristics in oyster farm had not been well studied. We could not demonstrate whether the assumption is correct or not and exactly understand what the properties of back scattering were in oyster farm without full polarimetric data. The results of AIRSAR L-band POLSAR data, experiments in laboratory and JERS-l images are discussed. We carried out an experiment simulating a target structure using vector network analyser (Y.N.A.) in an anechoic chamber at Niigata University. Radar returns from vertical poles are stronger than those from horizontal poles by 10.5 dB. Single bounce components were as strong as double bounce components and more sensitive to antenna look direction. Double bounce components show quasi-linear relation with height of vertical poles. As black absorber replaced AI-plate in bottom surface, double bounce in vertical pole decreased. It is observed that not all oyster farms are characterized by double bounced scattering in AIRSAR data. The image intensity of the double bounce dominant oyster farm was investigated with respect to that of oyster farm dominated by single bounce in JERS-l SAR data. The image intensity model results in a correlation coefficient (R2 ) of 0.78 in double bounce dominant area while that of 0.54 in single bouncing dominant area. This shows that double bounce dominant area should be selected for water height measurement using In8AR technique.

  • PDF

Evaluation of Polarimetric Parameters for Flood Detection Using PALSAR-2 Quad-pol Data

  • Jung, Yoon Taek;Park, Sang-Eun;Baek, Chang-Sun;Kim, Dong-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.117-126
    • /
    • 2018
  • This study aims to evaluate the usability of polarimetric SAR measurements for discriminating water-covered area from other land cover types and to propose polarimetric parameters showing the better response to the flood. Flood-related changes in the polarimetric parameters were studied using the L-band PALSAR-2 quad-pol mode data acquired before and after the severe flood events occurred in Joso city, Japan. The experimental results showed that, among various polarimetric parameters, the HH-polarization intensity, the Shannon entropy, and the surfaces scattering component of model-based decomposition were found to be useful to discriminate water-covered areas from other land cover types. Particularly, an unsupervised change detection with the Shannon entropy provides the best result for an automated mapping of flood extents.

Reflection Symmetry of PALSAR Quad-Pol Imagery in the Amazon Rainforest (아마존 지역 PALSAR 다중편파 자료의 반사대칭성 특성)

  • Kim, Jae-Hun;Yoon, Sun Yong;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.969-979
    • /
    • 2018
  • This paper presents reflection symmetry of polarimetric SAR over the Amazon rainforest in terms of correlation coefficients between the pairs of HH- and HV-pol and VV- and VH-pol data by ALOS PALSAR. The reflection symmetry is defined as a non-zero correlation between HH- and HV-pol and VV- and VH-pol over natural distributed targets, and is a fundamental assumption for cross-talk calibration coefficient computation and for three-component decomposition for polarimetric SAR data. The Amazon rainforest is especially one of the common global reference sites for the reflection symmetry. The correlation coefficients for the pairs of reflection symmetry obtained in this study range from 0.018 to 0.097. The results imply that there exists a non-negligible dependency between co-pol and cross-pol in the distributed natural targets, and consequently the non-zero correlation must be considered as a potential contribution to errors of spaceborne SAR polarimetry to some extent.

A study on microwave scattering characteristics in intertidal flats using polarimetric SAR (다편광 SAR 자료를 이용한 조간대 표면 퇴적물에서의 마이크로파 산란 특성 연구)

  • Park, Sang-Eun;Kim, Duk-Jin;Moon, Woo-Il M.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.271-276
    • /
    • 2006
  • In this paper a polarimetric airborne SAR measurement has been used to study the radar polarimetric characteristics in the intertidal area on the south coastof the Korea. The L-band NASA/JPL airborne SAR (AIRSAR) data, which were acquired on the intertidal zone during PACRIM-II Korea campaign on September 30, 2000, were used for this research. The most intertidal zones of Yeoja Bay are composed of muddy soils with high silt and clay percentage. Models of microwave scattering from rough surfaces, i.e., semi-empirical model, and Extended Bragg model, were applied to investigate the surface characteristics of intertidal zones.

  • PDF

Development of a Scattering Model for Earth Surface and Comparison with JPL AIRSAR Data (지표면 산란모델 개발과 JPL AirSAR 측정데이터와 비교)

  • 이성화;정구준;오이석
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.129-134
    • /
    • 2003
  • 본 논문에서는 지표면 산란에 대한 모델을 개발하였고 이를 JPL AirSAR 측정데이터와 비교하였다. 식물이 없는 토양에서의 레이더 산란에 대해 새로 개발된 polarimetric empirical model(PEM)을 바탕으로, radiative transfer 이론을 이용하여 숲, 논, 밭 등 식물이 있는 토양에서의 레이더 산란 모델을 개발하였다. 지표면에서의 산란에 대해 개발된 이 모델을 AirSAR PACRIM-2 실험에서 얻은 측정 데이터와 비교하였다. 논, 채소밭, 풀 없는 토양, 소나무 숲 등에 대해 그 지역에서 얻은 지표면 변수를 이용한 산란모델 계산 결과를 측정 데이터와의 비교함으로써 이 산란모델의 사용가능 범위에 대한 논의가 이루어졌다.

  • PDF

Physical interpretation on eigen-parameters of polarimetric SAR data for microwave scattering from leaf

  • Park, Sang-Eun;Moon, Wooil M.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.316-318
    • /
    • 2003
  • An eigen-analysis of the coherency matrix provides the polarimetric scattering mechanisms with the matrix characterizing parameters. In this paper, the coherency matrices of deciduous and coniferous vegetation are calculated using the analytical method. The Generalized Rayleigh-Gans approximation is used to model backscattering from distributed coniferous and deciduous leaves. The characteristics of eigen-parameters of simulated coherency matrix for deciduous and coniferous leaves with respect to the leaf shapes and orientations are illustrated.

  • PDF

Study on the Forest Observation in Kushiro Wetland by using Dual-Frequency and Fully Polarimetric Airborne SAR (Pi-SAR) Data

  • Nakamura Kazuki;Wakabayashi Hiroyuki;Shinsho Hisashi;Maeno Hideo;Uratsuka Seiho;Nadai Akitsugu;Umehara Toshihiko;Moriyama Toshifumi
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.405-409
    • /
    • 2004
  • We chose the Kushiro wetland in Hokkaido, Japan, as a test site to monitor wetland areas. Synthetic aperture radar (SAR) can carry out continuous observation in any weather conditions, and can therefore be used to observe high humidity areas such as wetlands. We applied multi-parameter SAR data (dual-frequency, multi-polarization, and multi-incidence angle) to monitoring the wetland forest. To find the optimum incidence angle and polarization for monitoring the wetland biomass, a simple backscattering model of wetland vegetation was developed and applied to estimate backscattering coefficients for different biomass and surface conditions.

  • PDF

Overview of new developments in satellite geophysics in 'Earth system' research

  • Moon Wooil M.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.3-17
    • /
    • 2004
  • Space-borne Earth observation technique is one of the most cost effective and rapidly advancing Earth science research tools today and the potential field and micro-wave radar applications have been leading the discipline. The traditional optical imaging systems including the well known Landsat, NOAA - AVHRR, SPOT, and IKONOS have steadily improved spatial imaging resolution but increasing cloud covers have the major deterrent. The new Earth observation satellites ENVISAT (launched on March 1 2002, specifically for Earth environment observation), ALOS (planned for launching in 2004 - 2005 period and ALOS stands for Advanced Land Observation Satellite), and RADARSAT-II (planned for launching in 2005) all have synthetic aperture radar (SAR) onboard, which all have partial or fully polarimetric imaging capabilities. These new types of polarimetric imaging radars with repeat orbit interferometric capabilities are opening up completely new possibilities in Earth system science research, in addition to the radar altimeter and scatterometer. The main advantage of a SAR system is the all weather imaging capability without Sun light and the newly developed interferometric capabilities, utilizing the phase information in SAR data further extends the observation capabilities of directional surface covers and neotectonic surface displacements. In addition, if one can utilize the newly available multiple frequency polarimetric information, the new generation of space-borne SAR systems is the future research tool for Earth observation and global environmental change monitoring. The potential field strength decreases as a function of the inverse square of the distance between the source and the observation point and geophysicists have traditionally been reluctant to make the potential field observation from any space-borne platforms. However, there have recently been a number of potential field missions such as ASTRID-2, Orsted, CHAMP, GRACE, GOCE. Of course these satellite sensors are most effective for low spatial resolution applications. For similar objects, AMPERE and NPOESS are being planned by the United States and France. The Earth science disciplines which utilize space-borne platforms most are the astronomy and atmospheric science. However in this talk we will focus our discussion on the solid Earth and physical oceanographic applications. The geodynamic applications actively being investigated from various space-borne platforms geological mapping, earthquake and volcano .elated tectonic deformation, generation of p.ecise digital elevation model (DEM), development of multi-temporal differential cross-track SAR interferometry, sea surface wind measurement, tidal flat geomorphology, sea surface wave dynamics, internal waves and high latitude cryogenics including sea ice problems.

  • PDF

Development of a Scattering Model for Soybean Fields and Verification with Scatterometer and SAR Data at X-Band

  • Kweon, Soon-Koo;Hwang, Ji-Hwan;Oh, Yi-Sok
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.115-121
    • /
    • 2012
  • This paper presents a scattering model and measurements of backscattering coefficients for soybean fields. The polarimetric radar backscatters of a soybean field were measured using the ground-based X-band polarimetric scatterometer in an angular range from $20^{\circ}$ to $60^{\circ}$. The backscattering coefficients were also obtained using the COSMO-SkyMed (Spotlight mode, HH-polarization) from July to October 2010. The backscattering coefficients of the soybean field were computed using the 1st-order radiative transfer model (RTM) with field-measured input parameters. The soybean layer is composed of the stems, branches, leaves, and soybean pods. The stems, branches, and pods are modeled with lossy dielectric cylinders, the leaves are modeled with lossy dielectric disks. The estimated backscattering coefficients agree quite well with the field-measured radar backscattering coefficients.