• Title/Summary/Keyword: Polar regions

Search Result 223, Processing Time 0.025 seconds

Isotopic Hydrograph Separation Using Artificial Rain-on-snow Experiments and Its Implications by Each Tracer (인공강우실험을 이용한 동위원소수문분리 및 각각의 추적자에 따른 의미)

  • Lee, Jeonghoon
    • Ocean and Polar Research
    • /
    • v.38 no.4
    • /
    • pp.331-338
    • /
    • 2016
  • Many studies using tracers have been conducted to understand a physical process in a system. Rain-on-snow could accelerate snowmelt processes, which influences the hydrological process in both temperate and polar regions. Hydrological and ecological conditions will be affected by the amount and timing of discharge reaching the bottom of a snowpack. The discharge consists of the rain-on-snow, pore water penetrating into the snowpack and natural meltwater. In this study, after a rain-on-snow experiment, we conducted an isotopic hydrograph separation to distinguish rainwater and pore water from meltwater. Using the isotopic data of snow and meltwater from Lee et al. (2010), two components were separated based on the assumption that rainwater and pore water are new water and natural meltwater is old water. After the second rain-on-snow experiment, the maximum contributions of rainwater and pore water reached up to 69% of the discharge and then decreased. During the study period, the measured total discharge was 4153 L and 40% (based on hydrogen isotope) of rainwater and pore water was calculated in the discharge, which is not consistent with what Lee et al. (2016) calculated using chemical separation (63%). This inconsistency can be explained by how an end-member was defined in both approaches. The contributions of artificial rainonsnow and pore water to melwater discharge range between the two methods. This study will suggest a mixing calculation from isotopic compositions of the Southern Ocean.

Amery Ice-Shelf velocity from ICESat laser altimetry (ICESat 인공위성을 이용한 Amery Ice-Shelf (빙붕)의 속도 계산)

  • Seo, Ki-Weon;Han, Shin-Chan
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.145-148
    • /
    • 2008
  • ICESat launched in Jan. 2003 has a capability to monitor polar regions with its inclination of 94 degree. ICESat carries GLAS (Geosciences Laser Altimetry System) to measure Earth's topography in unprecedented accuracy, and thus it can be applied for glacier variation due to recent climate changes. Here we present a new method to estimate velocity structure of Amery Ice-Shelf using ICESat altimtery data. ICESat data shows horizontal displacement of Amery Ice-Shelf, which can be directly used for velocity estimation. This method is expected to extend to other ice-shelves in Antarctica.

  • PDF

Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors

  • Lee, Seongsuk;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.305-311
    • /
    • 2016
  • The spatial size and variation of Arctic sea ice play an important role in Earth's climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP) F13 Special Sensor Microwave/Imagers (SSMI) and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS) sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA).

A new species of the primitive stromatoporoid Cystostroma from the Ordovician of East Asia

  • Jeon, Juwan;Li, Qijian;Oh, Jae-Ryong;Choh, Suk-Joo;Lee, Dong-Jin
    • Geosciences Journal
    • /
    • v.23 no.4
    • /
    • pp.547-556
    • /
    • 2019
  • A new species of the most primitive rosenellid stromatoporoid Cystostroma, C. primordia sp. nov. is reported from the Hunghuayuan Formation (Lower Ordovician, Floian) of Guizhou Province in the South China Block and the Duwibong Formation (Middle Ordovician, Darriwilian) of the Taebaeksan Basin in mid-eastern Korea (North China Block). This species is the first representative of the genus found in both the North and South China blocks. Cystostroma primordia sp. nov. is characterized by the absence of denticles and distinctively smaller cyst plates (height 0.04-0.20 mm, length 0.09-0.39 mm) than any other known species of Cystostroma. The presence of C. primordia sp. nov. in Lower to Middle Ordovician strata of western Gondwana challenges the long-held view of the late Middle Ordovician emergence of Paleozoic stromatoporoids. The simple internal morphological features of this new species and its occurrence in the Lower Ordovician of South China strongly indicate that an Early Ordovician Cystostroma-type precursor from western Gondwana is located near the base of the stromatoporoid stock. This occurrence greatly preceded the late Middle Ordovician (late Darriwilian) stromatoporoid diversification in circum-equatorial regions worldwide.

Trace Element in the Indian Ocean: Current Research Trends and Future Needs (인도양에서 미량원소 연구 동향 및 향후 연구 방향)

  • Kim, Intae
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.335-352
    • /
    • 2021
  • Trace elements in the ocean have been known as essential micronutrients for the primary production of phytoplankton and the growth of marine organisms. The GEOTRACES program beginning in the mid-2000 provided a new understanding of the distribution, origin and behavior of trace elements in the ocean, together with the establishment of both clean seawater sampling and trace element analysis techniques. The Indian Ocean, one of the major oceans, is relatively the least explored area, despite playing an important role in global climate variability. Although trace element observations have recently been conducted in the Indian Ocean by Japanese-and Indian scientists, relatively not much study has been done compared to the Atlantic, Pacific and Polar Regions. Recently, together with the launch of R/V Isabu, a 5,000-ton grade large- and comprehensive research vessel, the observations of trace elements has been conducted in the Indian Ocean for the first time in Korea since 2018. In this paper, we introduce the key results of currently conducted GEOTRACES expedition in the Indian Ocean to present future trace element research directions in the Indian Ocean, and also reviewed the preliminary results in the Indian Ocean studies from Korea. In the 2020s, new Indian Ocean GEOTRACES projects are planned around European countries, and it is time for Korea to prepare for the next phase of the trace element study in the Indian Ocean in line with these international trends.

Diversity of the Bambusicolous Fungus Apiospora in Korea: Discovery of New Apiospora Species

  • Sun Lul Kwon;Minseo Cho;Young Min Lee;Hanbyul Lee;Changmu Kim;Gyu-Hyeok Kim;Jae-Jin Kim
    • Mycobiology
    • /
    • v.50 no.5
    • /
    • pp.302-316
    • /
    • 2022
  • Many Apiospora species have been isolated from bamboo plants - to date, 34 bambusicolous Apiospora species have been recorded. They are known as saprophytes, endophytes, and plant pathogens. In this study, 242 bambusicolous Apiospora were isolated from various bamboo materials (branches, culms, leaves, roots, and shoots) and examined using DNA sequence similarity based on the internal transcribed spacer, 28S large subunit ribosomal RNA gene, translation elongation factor 1-alpha, and beta-tubulin regions. Nine Apiospora species (Ap. arundinis, Ap. camelliae-sinensis, Ap. hysterina, Ap. lageniformis sp. nov., Ap. paraphaeosperma, Ap. pseudohyphopodii sp. nov., Ap. rasikravindrae, Ap. saccharicola, and Ap. sargassi) were identified via molecular analysis. Moreover, the highest diversity of Apiospora was found in culms, and the most abundant species was Ap. arundinis. Among the nine Apiospora species, two (Ap. hysterina and Ap. paraphaeosperma) were unrecorded in Korea, and the other two species (Ap. lageniformis sp. nov. and Ap. pseudohyphopodii sp. nov.) were potentially novel species. Here, we describe the diversity of bambusicolous Apiospora species in bamboo organs, construct a multi-locus phylogenetic tree, and delineate morphological features of new bambusicolous Apiospora in Korea.

Seven Unrecorded Indigenous Fungi from Mudeungsan National Park in Korea

  • Minseo Cho;Sun Lul Kwon;Young Mok Heo;Young Min Lee;Hanbyul Lee;Changmu Kim;Byoung Jun Ahn;Jae-Jin Kim
    • Mycobiology
    • /
    • v.50 no.4
    • /
    • pp.203-212
    • /
    • 2022
  • Fungi act as important decomposers in the forest environment. They recycle essential nutrients, promote plant growth through mycorrhizal relationships, and act as food for small animals. Samples of 265 indigenous fungal species were collected from Mudeungsan National Park in 2020. These species were identified based on morphological, molecular, and phylogenetic analyses using the internal transcribed spacer (ITS), nuclear large subunit rRNA (LSU), and RNA polymerase II second largest subunit (rpb2) regions. Subsequently, seven species were identified as unrecorded species in Korea: Cordyceps cicadae, Dentocorticium bicolor, Hymenochaete nanospora, Physisporinus crataegi, Rigidoporus piceicola, Russula raoultii, and Scutellinia crinita. This study reveals their detailed macro- and microscopic morphological characteristics with phylogenetic trees to report them as unrecorded species in Korea.

Development of Dynamical Seasonal Prediction System for Northern Winter using the Cryospheric Condition of Late Autumn (가을철 빙권 조건을 활용한 겨울철 역학 계절 예측시스템의 개발)

  • Shim, Taehyoun;Jeong, Jee-Hoon;Kim, Baek-Min;Kim, Seong-Joong;Kim, Hyun-Kyung
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.73-83
    • /
    • 2013
  • In recent several years, East Asia, Europe and North America have suffered successive cold winters and a number of historical records on the extreme weathers are replaced with new record-breaking cold events. As a possible explanation, several studies suggested that cryospheric conditions of Northern Hemisphere (NH), i.e. Arctic sea-ice and snow cover over northern part of major continents, are changing significantly and now play an active role for modulating midlatitude atmospheric circulation patterns that could bring cold winters for some regions in midlatitude. In this study, a dynamical seasonal prediction system for NH winter is newly developed using the snow depth initialization technique and statistically predicted sea-ice boundary condition. Since the snow depth shows largest variability in October, entire period of October has been utilized as a training period for the land surface initialization and model land surface during the period is continuously forced by the observed daily atmospheric conditions and snow depths. A simple persistent anomaly decaying toward an averaged sea-ice condition has been used for the statistical prediction of sea-ice boundary conditions. The constructed dynamical prediction system has been tested for winter 2012/13 starting at November 1 using 16 different initial conditions and the results are discussed. Implications and a future direction for further development are also described.

A Study on Isotopic Fractionation between Ice and Meltwater by a Melting Experiment (융해실험에 의한 얼음과 융해수의 안정동위원소분화에 관한 연구)

  • Lee, Jeonghoon;Ham, Ji-Young;Hur, Soon Do
    • Ocean and Polar Research
    • /
    • v.37 no.4
    • /
    • pp.327-332
    • /
    • 2015
  • Isotopic compositions of ice and meltwater play a very crucial role in paleoclimate studies based on ice cores and water resources research conducted in alpine hydrogeology. Better understanding of variations in the stable isotopic compositions of water is required since changes from ice to liquid water are gaining more attention due to recent climate change. In this work, a melting experiment was designed and conducted to investigate how the isotopic compositions of ice vary with time by heat sources, such as solar radiation. We conducted the melting experiment for 22 hours. The discharge rate rose to a maximum value after 258 minutes and gradually declined because we fixed the heat source. The isotopic compositions of meltwater increased linearly or to a second degree polynomial. The linear relationship between oxygen and hydrogen has a slope of 6.8, which is less than that of the Global Meteoric Water Line (8) and higher than a theoretical value (6.3). The deuterium excess decreased when ${\delta}D$ or ${\delta}^{18}O$ increases or vise versa since the slope of the relationship for ice-liquid exchange is less than 8. These findings and the apparatus of the melting experiments will make a helpful contribution to the studies of stable isotopes and the melting process in temperate and polar regions.

Variability of Surface Chlorophyll Concentration in the Northwest Pacific Ocean (북서태평양의 표층엽록소 변동성)

  • Park, Ji-Soo;Suk, Moon-Sik;Yoon, Suk;Yoo, Sin-Jae
    • Ocean and Polar Research
    • /
    • v.30 no.3
    • /
    • pp.277-287
    • /
    • 2008
  • We collected information on seasonal and interannual variability of surface chlorophyll a concentration between 1997-2007 from the Northwest Pacific Ocean. Satellite data were used to acquire chlorophyll a and sea surface temperature from six regions: East Sea/Ulleung Basin, East China Sea, Philippin Sea, Warm Pool region, Warm Pool North region, and Warm Pool East region. Mixed layer depth (MLD) was calculated from temperature profiles of ARGO floats data in four of the six regions during 2002-2007. In the East Sea/Ulleung Basin, seasonal variability of chlorophyll a concentration was attributed to seasonal change of MLD, while there was no significant relationship between chlorophyll a concentration and MLD in the Warm Pool region. Interannual anomaly in sea surface temperature were similar among the East Sea, East China Sea, Philippin Sea, and Warm Pool North region. The anomaly pattern was reversed in the Warm Pool East region. However, the anomaly pattern in the Warm Pool region was intermediate of the two patterns. In relation to chlorophyll a, there was a reversed interannual anomaly pattern between Warm Pool North and Warm Pool East, while the anomaly pattern in the Warm Pool region was similar to that of Warm Pool North except for the El $Ni\tilde{n}o$ years (1997/1998, 2002/2003, 2006/2007). However, there was no distinct relationship among other seas. Interestingly, in the Warm Pool and Warm Pool East regions, sea surface temperature showed a pronounced inverse pattern with chlorophyll a. This indicates a strong interrelationship among sea surface temperature-MLD-chlorophyll a in the regions. In the Warm Pool and Warm Pool East, zonal distribution of chlorophyll a concentration within the past 10 years has shown a good relationship with sea surface temperature which reflects ENSO variability.