Browse > Article
http://dx.doi.org/10.5140/JASS.2016.33.4.305

Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors  

Lee, Seongsuk (Department of Astronomy, Space Science and Geology, Chungnam National University)
Yi, Yu (Department of Astronomy, Space Science and Geology, Chungnam National University)
Publication Information
Journal of Astronomy and Space Sciences / v.33, no.4, 2016 , pp. 305-311 More about this Journal
Abstract
The spatial size and variation of Arctic sea ice play an important role in Earth's climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP) F13 Special Sensor Microwave/Imagers (SSMI) and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS) sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA).
Keywords
the Arctic; sea ice; sea ice concentration; DMSP; passive microwave sensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 ACIA, Arctic Climate Impact Assessment, eds. Symon C, Arris L, Heal B (Cambridge Univ. Press, Cambridge, 2005).
2 Boe J, Hall A, Qu X, September sea-ice cover in the Arctic Ocean projected to vanish by 2100, Nature Geosci. 2, 341- 343 (2009). http://dx.doi.org/10.1038/ngeo467   DOI
3 Cavalieri DJ, Crawford JP, Drinkwater MR, Emery WJ, Eppler DT, et al., NASA sea ice validation program for the defense meteorological satellite program special sensor microwave imager: final report, NASA Goddard Space Flight Center Technical Report, NASA-TM-104559 (1992).
4 Cavalieri DJ, Parkinson CL, Gloersen P, Comiso JC, Zwally HJ, Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets, J. Geophys. Res. 104, 15803-15814 (1999). http://dx.doi.org/10.1029/1999JC900081   DOI
5 Comiso JC, Parkinson CL, Gersten R, Stock L, Accelerated decline in the Arctic sea ice cover, Geophys. Res. Lett. 35, L01703 (2008). http://dx.doi.org/10.1029/2007GL031972   DOI
6 Curry JA, Schramm JL, Ebert EE, Sea ice-albedo climate feedback mechanism, J. Clim. 8, 240-247 (1995). http:// dx.doi.org/10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2   DOI
7 Deser C, Teng H, Evolution of Arctic sea ice concentration trends and the role of atmospheric circulation forcing, 1979-2007, Geophys. Res. Lett. 35, L02504 (2008). http://dx.doi.org/10.1029/2007GL032023   DOI
8 Deser C, Walsh JE, Timlin MS, Arctic sea ice variability in the context of recent atmospheric circulation trends, J. Clim. 13, 617-633 (2000). http://dx.doi.org/10.1175/1520-0442(2000)013<0617:ASIVIT>2.0.CO;2   DOI
9 Fetterer F, Knowles K, Meier W, Savoie M, Sea ice index, version 2, National Snow and Ice Data Center (NSIDC) Scientific Data Sets (2016) [Internet], updated daily, available from: http://dx.doi.org/10.7265/N5736NV7   DOI
10 Haas C, Pfaffling A, Hendricks S, Rabenstein L, Etienne JL, et al., Reduced ice thickness in Arctic transpolar drift favors rapid ice retreat, Geophys. Res. Lett. 35, L17501 (2008). http://dx.doi.org/10.1029/2008GL034457   DOI
11 Holland MM, Bitz CM, Tremblay B, Future abrupt reductions in the summer Arctic sea ice, Geophys. Res. Lett. 33, L23503 (2006). http://dx.doi.org/10.1029/2006GL028024   DOI
12 Hu A, Rooth C, Bleck R, Deser C, NAO influence on sea ice extent in the Eurasian coastal region, Geophys. Res. Lett. 29, 2053 (2002). http://dx.doi.org/10.1029/2001GL014293   DOI
13 IPCC, Climate Change 2013 - The Physical Science Basis, eds. Stocker TF, Qin D, Plattner GK, Tignor MMB, Allen SK, et al. (Cambridge Univ. Press, Cambridge, 2013).
14 Kay JE, Holland MM, Jahn A, Inter-annual to multi-decadal Arctic sea ice extent trends in a warming world, Geophys. Res. Lett. 38, L15708 (2011). http://dx.doi.org/10.1029/2011GL048008   DOI
15 Kwok R, Cunningham GF, Wensnahan M, Rigor I, Zwally HJ, et al., Thinning and volume loss of the Arctic Ocean sea ice cover: 2003-2008, J. Geophys. Res. 114, C07005 (2009). http://dx.doi.org/10.1029/2009JC005312   DOI
16 Maslanik JA, Stroeve J, Near-real-time DMSP SSMIS daily polar gridded sea ice concentrations, NASA DAAC at National Snow and Ice Data Center (NSIDC) (1999) [Internet], updated daily, available from: https://nsidc.org/data/docs/daac/nsidc0081_ssmi_nrt_seaice.gd.html
17 Parkinson CL, Comiso JC, On the 2012 record low Arctic sea ice cover: combined impact of preconditioning and an August storm, Geophys. Res. Lett. 40, 1356-1361 (2013). http://dx.doi.org/10.1002/grl.50349   DOI
18 Giles KA, Laxon SW, Ridout AL, Circumpolar thinning of Arctic sea ice following the 2007 record ice extent minimum, Geophys. Res. Lett. 35, L22502 (2008). http://dx.doi.org/10.1029/2008GL035710   DOI
19 Maslanik JA, Fowler C, Stroeve J, Drobot S, Zwally HJ, et al., A younger, thinner Arctic ice cover: increased potential for rapid, extensive ice loss, Geophys. Res. Lett. 34, L24501 (2007). http://dx.doi.org/10.1029/2007GL032043   DOI
20 Ogi M, Wallace JM, Summer minimum Arctic sea ice extent and the associated summer atmospheric circulation, Geophys. Res. Lett. 34, L12705 (2007). http://dx.doi.org/10.1029/2007GL029897   DOI
21 Perovich DK, Polashenski C, Albedo evolution of seasonal Arctic sea ice, Geophys. Res. Lett. 39, L08501 (2012). http://dx.doi.org/10.1029/2012GL051432   DOI
22 Perovich DK, Light B, Eicken H, Jones KF, Runciman K, et al., Increasing solar heating of the Arctic Ocean and adjacent seas, 1979-2005: attribution and role in the ice-albedo feedback, Geophys. Res. Lett. 34, L19505 (2007). http://dx.doi.org/10.1029/2007GL031480   DOI
23 Perovich DK, Richter-Menge JA, Jones KF, Light B, Sunlight, water, and ice: extreme Arctic sea ice melt during the summer of 2007, Geophys. Res. Lett. 35, L11501 (2008). http://dx.doi.org/doi:10.1029/2008GL034007   DOI
24 Perovich DK, Richter-menge JA, Jones KF, Light B, Elder BC, et al., Arctic sea-ice melt in 2008 and the role of solar heating, Ann. Glaciol. 52, 355-359 (2011).   DOI
25 Serreze MC, Barry RG, Processes and impacts of Arctic amplification: a research synthesis, Glob. Planet. Change 77, 85-96 (2011). http://dx.doi.org/10.1016/j.gloplacha.2011.03.004   DOI
26 Rothrock DA, Zhang J, Arctic Ocean sea ice volume: what explains its recent depletion, J. Geophys. Res. 110, C01002 (2005). http://dx.doi.org/10.1029/2004JC002282   DOI
27 Nghiem SV, Rigor IG, Perovich DK, Clemente-Colon P, Weatherly JW, et al., Rapid reduction of Arctic perennial sea ice, Geophys. Res. Lett. 34, L19504 (2007). http://dx.doi.org/10.1029/2007GL031138   DOI
28 Rothrock DA, Percival DB, Wensnahan M, The decline in Arctic sea-ice thickness: separating the spatial, annual, and interannual variability in a quarter century of submarine data, J. Geophys. Res. 113, C05003 (2008). http://dx.doi.org/10.1029/2007JC004252   DOI
29 Screen JA, Simmonds I, The central role of diminishing sea ice in recent Arctic temperature amplification, Nature 464, 1334-1337 (2010). http://dx.doi.org/10.1038/nature09051   DOI
30 Serreze MC, Francis JA, The Arctic amplification debate, Clim. Change 76, 241-264 (2006). http://dx.doi.org/10.1007/ s10584-005-9017-y   DOI
31 Serreze MC, Holland MM, Stroeve J, Perspectives on the Arctic's shrinking sea-ice cover, Science 315, 1533-1536 (2007). http://dx.doi.org/10.1126/science.1139426   DOI
32 Shibata A, Murakami H, Comiso JC, Sea surface temperature in Arctic Ocean from 2002 to 2009 observed by advanced microwave scanning radiometer-E, J. Remote Sens. Soc. Jpn. 30, 105-113 (2010). http://dx.doi.org/10.11440/ rssj.30.105   DOI
33 Steele M, Ermold W, Zhang J, Arctic Ocean surface warming trends over the past 100 years, Geophys. Res. Lett. 35, L02614 (2008). http://dx.doi.org/10.1029/2007GL031651   DOI
34 Steffen K, Key J, Cavalieri DJ, Comiso JC, Gloersen P, et al., The estimation of geophysical parameters using passive microwave algorithms, Chapter 10, Microwave Remote Sensing of Sea Ice, ed. Carsey FD (American Geophysical Union, Washington D. C., 1992), 243-259.
35 Stroeve J, Holland MM, Meier W, Scambos T, Serreze M, Arctic sea ice decline: faster than forecast, Geophys. Res. Lett. 34, L09501 (2007). http://dx.doi.org/10.1029/2007GL029703   DOI
36 Timmermans ML, The impact of stored solar heat on Arctic sea ice growth, Geophys. Res. Lett. 42, 6399-6406 (2015). http://dx.doi.org/10.1002/2015GL064541   DOI
37 Ukita J, Honda M, Nakamura H, Tachibana Y, Cavlieri DJ, et al., Northern hemisphere sea ice variability: lag structure and its implications, Tellus A 59, 261-272 (2007). http://dx.doi.org/10.1111/j.1600-0870.2006.00223.x   DOI