• Title/Summary/Keyword: Polar compounds

Search Result 209, Processing Time 0.029 seconds

Isolation of secondary metabolites from an Arctic bacterium, Pseudomonas aeruginosa and their antimicrobial activities (북극유래 박테리아, Pseudomonas aeruginosa로 부터 대사산물들의 분리 및 항진균 활성)

  • Youn, Ui Joung;Kim, Min Ju;Han, Se Jong;Yim, Jung Han
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.415-420
    • /
    • 2016
  • Chemical study of an Arctic bacterium, Pseudomonas aeruginosa (Pseudomonadaceae) led to the isolation of two diketopiperazines 1 and 2, two phenazine alkaloids 3 and 4, and an indole carbaldehyde 5, along with a benzoic acid derivative 6. The structures of the compounds were confirmed by 1D and 2D NMR, and MS experiments, as well as by comparison of their data with published values. Among the isolates, compounds 5 and 6 were isolated for the first time from P. aeruginosa of the seawater of Arctic Chuckchi Sea. Antimicrobial activities of compounds 1‒6 against a Staphylococcus aureus and Candida albicans were evaluated.

Complete $^1H$-NMR and $^{13}C$-NMR spectral analysis of the pairs of 20(S) and 20(R) ginsenosides

  • Yang, Heejung;Kim, Jeom Yong;Kim, Sun Ok;Yoo, Young Hyo;Sung, Sang Hyun
    • Journal of Ginseng Research
    • /
    • v.38 no.3
    • /
    • pp.194-202
    • /
    • 2014
  • Background: Ginsenosides, the major ingredients of Panax ginseng, have been studied for many decades in Asian countries as a result of their wide range of pharmacological properties. The less polar ginsenosides, with one or two sugar residues, are not present in nature and are produced during manufacturing processes by methods such as heating, steaming, acid hydrolysis, and enzyme reactions. $^1H$-NMR and $^{13}C$-NMR spectroscopic data for the identification of the less polar ginsenosides are often unavailable or incomplete. Methods: We isolated 21 compounds, including 10 pairs of 20(S) and 20(R) less polar ginsenosides (1-20), and an oleanane-type triterpene (21) from a processed ginseng preparation and obtained complete $^1H$-NMR and $^{13}C$-NMR spectroscopic data for the following compounds, referred to as compounds 1-21 for rapid identification: 20(S)-ginsenosides Rh2 (1), 20(R)-Rh2 (2), 20(S)-Rg3 (3), 20(R)-Rg3 (4), 6'-O-acetyl-20(S)-Rh2 [20(S)-AcetylRh2] (5), 20(R)-AcetylRh2 (6), 25-hydroxy-20(S)-Rh2 (7), 25-hydroxy-20(S)-Rh2 (8), 20(S)-Rh1 (9), 20(R)-Rh1 (10), 20(S)-Rg2 (11), 20(R)-Rg2 (12), 25-hydroxy-20(S)-Rh1 (13), 25-hydroxy-20(R)-Rh1 (14), 20(S)-AcetylRg2 (15), 20(R)-AcetylRg2 (16), Rh4 (17), Rg5 (18), Rk1 (19), 25-hydroxy-Rh4 (20), and oleanolic acid 28-O-b-D-glucopyranoside (21).

Vulcanization Efficiency of Non-polar Rubber Compounds by Microwave (마이크로파를 이용한 비극성 고무컴파운드의 가황 효율)

  • Jung, U-Sun;Lee, Won-Ki;Lim, Kwon-Tack
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.228-231
    • /
    • 2011
  • The rate of vulcanization of nonpolar ethylene-propylene-diene terpolymer(EPDM)/carbon black compounds was investigated by using hot air and microwave as a heating source. The present study parameters such as heating source, sample thickness, and loading of an additive. The compound thickness was the main factor in the hot air vulcanization. It was due to the poor thermal conductivity of EPDM; that is, the thicker thickness, the lower vulcanization rate. For 100% vulcanization, the compound with 3 mm thickness required 7 min at $250^{\circ}C$ in the hot air system. However, the vulcanization of EPDM compounds by microwave system was not affected by the thickness while strongly dependent on the amount of a polar additive, carbon black. A compound with 80 phr of carbon black was perfectly vulcanized within 30 sec. These results suggest that the use of microwave as a heating source is an effective method for the vulcanization of compounds including a polar component.

Statistical optimization of phytol and polyunsaturated fatty acid production in the Antarctic microalga Micractinium variabile KSF0031

  • Kim, Eun Jae;Chae, Hyunsik;Koo, Man Hyung;Yu, Jihyeon;Kim, Hyunjoong;Cho, Sung Mi;Hong, Kwang Won;Lee, Joo Young;Youn, Ui Joung;Kim, Sanghee;Choi, Han-Gu;Han, Se Jong
    • ALGAE
    • /
    • v.37 no.2
    • /
    • pp.175-183
    • /
    • 2022
  • Polar microorganisms produce physiologically active substances to adapt to harsh environments, and these substances can be used as biomedical compounds. The green microalga Micractinium variabile KSF0031, which was isolated from Antarctica, produced phytol, a natural antimicrobial agent. Furthermore, several polyunsaturated fatty acids (PUFAs), including omega-3, exhibit antioxidant properties. Here statistical methods (Plackett-Burman design and Box-Behnken design) were used to optimize the culture medium of KSF0031 to improve biomass production, and K2HPO4, MgSO4·7H 2O, and ammonium ferric citrate green (AFCg) were selected as significant components of the culture medium. Changes in the concentration of K2HPO4 and MgSO4·7H 2O as positive factors and AFCg as a negative factor affected cell growth to a remarkable degree. The biomass production in a 100 L culture using the optimized medium for 24 d at 18℃ was improved by 37.5% compared to that obtained using the original BG-11 medium. The quantities of PUFAs and phytol obtained were 13 mg g-1 dry cell weight (DCW) and 10.98 mg g-1 DCW, which represent improved yields of 11.70% and 48.78%, respectively. The results of this study could contribute to an improved production of phytol and fatty acids from Antarctic microalgae in the biomedical industry.

A Study on the Analysis of Volatile Flavour of Kimchee (김치 휘발성 향기성분의 분석 방법에 관한 연구)

  • Hawer, Wooderck S.
    • Analytical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.125-132
    • /
    • 1994
  • Flavours in kimchee are the result of unique combination of various sugars, organic acids and amino acids as well as various volatile organic compounds including sulfur-containing compounds, terpenes, alcohols, and some volatile organic acids. In the experiment for the flavour extracting methods, dynamic headspace(DHS) is more effective for collection of volatile flavour than simultaneous distillation extraction(SDE). The best polarity available at the moment is 5% phenyl methyl poly-siloxane which will separate non-polar, intermediate and polar components with good resolution.

  • PDF

Organosiloxanes with molecular microrelief for liquid crystal alignment

  • Mazaeva, Vera G.;Belyaev, Victor V.;Timofeyev, Sergey N.;Min'ko, Anatoliy A.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.948-950
    • /
    • 2009
  • A few organosilicon compounds (OC) - both cyclic and linear siloxanes with different structure of the substituents - have been synthesized. Properties of the LC anchoring on OC films have been measured. The OC investigated provide the homogeneous planar alignment with LC tilt angle in the range from $0.7^{\circ}$ to $1.9^{\circ}$. An increase of the microrelief depth results in a small increase of the tilt angle. The azimuthal anchoring is better for the films of the OC without molecular microrelief or the OC comprising polar groups.

  • PDF

Alpine Microorganisms: Useful Tools for Low-Temperature Bioremediation

  • Margesin, Rosa
    • Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.281-285
    • /
    • 2007
  • Cold environments, including polar and alpine regions, are colonized by a wide diversity of micro-organisms able to thrive at low temperatures. There is evidence of a wide range of metabolic activities in alpine cold ecosystems. Like polar microorganisms, alpine microorganisms playa key ecological role in their natural habitats for nutrient cycling, litter degradation, and many other processes. A number of studies have demonstrated the capacity of alpine microorganisms to degrade efficiently a wide range of hydrocarbons, including phenol, phenol-related compounds and petroleum hydrocarbons, and the feasibility of low-temperature bioremediation of European alpine soils by stimulating the degradation capacity of indigenous microorganisms has also been shown.

Synthesis of Selenoflavonoids

  • Kim, Dong-Myung;Jeong, Jin-Hyun
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.182.1-182.1
    • /
    • 2003
  • Flavonoids with oxygen atoms are known to have potent biological effect.They have been studied long as major antioxidants which protect cell membranes. Recent medical surveys show that increased intake of selenium decreases the risk of breast, colon, lung and prostrate cancer by preventing free radical generation. The flavonoids, isoflavonoids, and coumarins which form the bulk of these compounds are very polar and have limited use as drugs which have to pass through BBB(Brain Blood Barrier)The non-polar property is increased by exchange oxygen to selenium as a part of heterocyclic compound. (omitted)

  • PDF

Evaluation of Thermally Oxidized Soybean Oil Using Carbon Nanotube Sensor (탄소나노튜브를 이용한 대두유의 가열산화 특성평가)

  • Lee, Eun-Ji;Lim, Seung-Yong;Fai, Vincent Lau Chun;Ju, Byeong-Kwon;Oh, Sang-Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.472-477
    • /
    • 2012
  • As people are being exposed to many types of fast food, rancid oil is a factor affecting public health. Monitoring of rancidity in frying oils needs to be done adequately. The chemical methods that are currently used require long periods of time and expertise. The development of a device that quickly and easily measures rancidity would be helpful to manage rancidity in frying oils adequately. Due to the fact that carbon nanotube (CNT) is sensitive to acid value, we used CNT as a sensing material for detecting oil rancidity. Polyethylenimine (PEI) was coated on CNT for stable measurements. Experiments were conducted at $100^{\circ}C$ after samples were cooled from $180^{\circ}C$. The results showed a strong correlation between acid values and resistances using CNT sensors. As the acid value of oils increased, the resistance of CNT sensors increased. Development of sensors using CNT may make it possible to determine the rancidity of frying oils in real-time and on site.

Phenanthrene Derivatives, 3,5-Dimethoxyphenanthrene-2,7-diol and Batatasin-I, as Non-Polar Standard Marker Compounds for Dioscorea Rhizoma

  • Yoon, Kee-Dong;Yang, Min-Hye;Nam, Sang-Il;Park, Ju-Hyun;Kim, Young-Choong;Kim, Jin-Woong
    • Natural Product Sciences
    • /
    • v.13 no.4
    • /
    • pp.378-383
    • /
    • 2007
  • Phenathrene derivatives, such as batatasins, are well-known constituents in Dioscorea Rhizoma. Although phenanthrenes have been reported as representative compounds in this plant, standard markers for quality control have been focused on the polar constituents (saponins and purine derivatives). Herein, simple, rapid and reliable HPLC method was developed to determine 3,5-dimethoxyphenanthrene-2,7-diol (DMP) and batatasin-I (BA-I) as non-polar standard maker compounds of Dioscorea Rhizoma. DMP and BA-I were analyzed under optimized HPLC conditions [column: Columbus $5{\mu}$ C18 100A ($30{\times}4.6mm$ i.d., $5{\mu}m$; mobile phase: $H_2O$ with 0.025% $CH_3COOH$ (v/v) for solvent A and $CH_3CN$ with 0.025% $CH_3COOH$ (v/v) for solvent B, gradient elution; flow rate: 2 mL/min; detection: 260 nm), and each experiment was finished within 13 min. Good linearity was achieved in the range from 0.5 to $10.0{\mu}g/mL$ for each compound, and intra- and inter-day precision were in the acceptable levels. The recovery test were performed with three different Dioscorea Rhizoma samples (D. opposita, D. batatas and D. japonica), and showed its accuracy values in the range of 97.2 - 102.8% for three different concentrations of DMP and BA-I. The content levels of DMP and BA-I were ranged under 0.0020%. These results demonstrated that amounts of DMP and BA-I are easily determined with conventional HPLC-UV-DAD method although the content levels were lower than those of saponins and allantoin in Dioscorea Rhizoma. This HPLC method could be used for quality control of various Dioscorea preparations.