• Title/Summary/Keyword: Polar anisotropic

Search Result 21, Processing Time 0.028 seconds

Lyotropic Mesomorphisms of a Lamellar Liquid Crystalline Phase in Non-hydrous Condition: A Phospholipid Hydrated by Different Polar Solvents

  • Lee, Dong-Kyu;Jeong, Kwan-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1165-1171
    • /
    • 2010
  • The lyotropic mesomorphism of lamellar liquid crystalline phase was examined by observing the swelling behavior of Distearoylphosphatidylcholine(DSPC) in glycerin and panthenol without water. The lyotropic mesomorphism was examined by using DSC, XRDs and Cryo-SEM. Increase of two polar solvents under non-hydrous condition showed distinctive differences in the lyotropic mesomorphism from forming different anisotropic structures with DSPC. Glycerin did not affect to the crystalline region of lamellar phase, whereas typical swelling mesomorphism was shown in the noncrystalline region. In contrast, panthenol showed some effect on the crystalline region, but common swelling mesomorphism was found in the non-crystalline region. In this case, the isopropyl and propyl groups in panthenol were the main factor to affect to the lipophilic domain in the crystalline region of lamellar phase. Also, it was found that the formation of well-arranged lamellar structure only by introducing glycerin and panthenol as a solvent without water, was possible. These results were confirmed by examination of the swelling mesomorphism of liquid crystal membrane triggered by introducing the two polar solvents.

Source & crustal propagation effects on T-wave envelopes

  • Yun, Suk-Young;Park, Min-Kyu;Lee, Won-Sang
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2010.10a
    • /
    • pp.27-27
    • /
    • 2010
  • There have been several studies about empirical relation between seismic source parameters(e.g., focal mechanisms, depths, magnitudes, etc.) and T-wave observation. In order to delineate the relation, numerical and theoretical approaches to figure out T-wave excitation mechanism are required. In an attempt to investigate source radiation and wave scattering effects in the oceanic crust on T-wave envelopes, we perform three-dimensional numerical modeling to synthesize T-wave envelopes. We first calculate seismic P- and SV-wave energy on the seafloor using the Direct Simulation Monte Carlo based on the Radiative Transfer Theory, which enables us to take into account both realistic seismic source parameters and wave scattering in heterogeneous media, and then estimate excited T-wave energy by normal mode computation. The numerical simulation has been carried out considering the following different conditions: source types (strike and normal faults), source depths (shallow and deep), and wave propagation through homogeneous and heterogeneous Earth media. From the results of numerical modeling, we confirmed that T-wave envelopes vary according to spatial seismic energy distributions on the seafloor for the various input parameters. Furthermore, the synthesized T-wave envelopes show directional patterns due to anisotropic source radiation, and the slope change of T-wave envelopes caused by focal depth. Seismic wave scattering in the oceanic crust is likely to control the shape of envelopes.

  • PDF

Growth and characterization of periodically polarity-inverted ZnO structures grown on Cr-compound buffer layers

  • Park, J.S.;Goto, T.;Hong, S.K.;Chang, J.H.;Yoon, E.;Yao, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.259-259
    • /
    • 2010
  • Periodically polarity inverted (PPI) ZnO structures on (0001) Al2O3 substrates are demonstrated by plasmas assisted molecular beam epitaxy. The patterning and re-growth methods are used to realize the PPI ZnO by employing the polarity controlling method. For the in-situ polarity controlling of ZnO films, Cr-compound buffer layers are used.[1, 2] The region with the CrN intermediate layer and the region with the Cr2O3 and Al2O3 substrate were used to grow the Zn- and O-polar ZnO films, respectively. The growth behaviors with anisotropic properties of PPI ZnO heterostructures are investigated. The periodical polarity inversion is evaluated by contrast images of piezo-response microscopy. Structural and optical interface properties of PPI ZnO are investigated by the transmission electron microcopy (TEM) and micro photoluminescence ($\mu$-PL). The inversion domain boundaries (IDBs) between the Zn and the O-polar ZnO regions were clearly observed by TEM. Moreover, the investigation of spatially resolved local photoluminescence characteristics of PPI ZnO revealed stronger excitonic emission at the interfacial region with the IDBs compared to the Zn-polar or the O-polar ZnO region. The possible mechanisms will be discussed with the consideration of the atomic configuration, carrier life time, and geometrical effects. The successful realization of PPI structures with nanometer scale period indicates the possibility for the application to the photonic band-gap structures or waveguide fabrication. The details of application and results will be discussed.

  • PDF

The Alignment of Liquid Crystals on the Film Surfaces of Soluble Aromatic Polyimides Bearing t-Butylphenyl and Trimethylsilylphenyl Side Groups

  • Hahm, Suk-Gyu;Jin, Kyeong-Sik;Park, Sam-Dae;Ree, Moon-Hor;Kim, Hyung-Sun;Kwon, Soon-Ki;Kim, Yun-Hi
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.976-986
    • /
    • 2009
  • With the study goal of firstly elucidating the anisotropic interactions between oriented polymer chain segments and liquid crystal (LC) molecules, and secondly of determining the contributions of the chemical components of the polymer segments to the film surface topography, LC alignment, pretilt, and anchoring energy, we synthesized three dianhydrides, 1,4-bis(4'-t-butylphenyl)pyromellitic dianhydride (BBPD), 1,4-bis(4'-trimethylsilylphenyl)pyromellitic dianhydride(BTPD), and 2,2'-bis(4"-tert-butylphenyl)-4,4',5,5'-biphenyltetracarboxylic dianhydride (BBBPAn), and a series of their organosoluble polyirnides, BBPD-ODA, BBPD-MDA, BBPD-FDA, BTPD-FDA, and BBBPAn-FDA, which contain the diamines 4,4'-oxydianiline (ODA), 4,4'-methylenediamine (MDA), and 4,4'-(hexafluoroisopropylidene)dianiline (FDA). All the polyimides were determined to be positive birefringent polymers, regardless of the chemical components. Although all the rubbed polyimide films exhibited microgrooves which were created by rubbing process, the film surface topography varied depending on the polyimides. In all the rubbed films, the polymer chains were unidirectionally oriented along the rubbing direction. However, the degree of in-plane birefringence in the rubbed film varied depending on the polyimides. The rubbing-aligned polymer chains in the polyimide films effectively induced the alignment of nematic LCs along their orientation directors by anisotropic interactions between the preferentially oriented polymer chain segments and the LCs. The azimuthal and polar anchoring energies of the LCs ranged from $0.45{\times}10^{-4}\;-\;1.37{\times}10^{-4}\;J/m^2$ and from $0.86{\times}10^{-5}\;-\;4.26{\times}10^{-5}\;J/m^2$, respectively, depending on the polyimides. The pretilt angles of the LCs were in the range $0.10-0.62^{\circ}$. In summary, the soluble aromatic polyimides reported here are promising LC alignment layer candidates for the production of advanced LC display devices.

Lyotropic Behaviors of a Phospholipid-based Lamella Liquid Crystalline Phase Hydrated by Propylene Glycol as a Polar Solvent: Correlation of DSPC vs PG Concentration

  • Jeong, Tae-Hwa;Oh, Seong-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.108-114
    • /
    • 2007
  • The lyotropic behaviors to form the structure of distearoylphosphatidylcholine (DSPC)-based liquid crystal (LC) hydrated by only propylene glycol (PG) without water were examined by differential scanning calorimetry (DSC), X-ray diffractions (XRD), polarized microscope (PM) and transmission electron microscope (TEM). By increasing the amount of PG instead of water, it showed the phase transition to be gradually changed from anisotropic structures to other structures more close to isotropic ones and their appearance to be changed from solid-like states to liquid-like ones with more fluidity. Below 50% w/w PG, the mixtures of DSPC and PG resulted in no direct observation of LC structure through PM because they were very close to solid-states. From 55% w/w to 90% w/w of PG, the dense lamella crystalline structures were observed through PM, and their thickness and area decreased as the content of PG increased. Measured by DSC with heating process, the main phase transition from α -lamella phase to isotropic phase appeared from 52.89 °C to 47.41 °C to show linearly decreasing behaviors because PG affects the hydrophobic region of DSPC-based lamella phase. The repeating distance of the lamella phase and the interlayer distance between bilayers were calculated with XRDs and the average number of bilayers related to the thickness in LC structure was approximately estimated by combining with TEM results. The WAXS and DSC measurements showed that all of PG molecules contributed to swelling both the lipid layer in the edge region of lamella phase close to phosphate groups and the interlayer between bilayers below 90% w/w of PG. The phase and thermal behaviors were found to depend on the amount of PG used by means of dissolving DSPC as a phospholipid and rearranging its structure. Instead of water, the inducement of PG as a polar solvent in solid-lamella phase is discussed in terms of the swelling effect of PG for DSPC-based lamella membrane.

The Phase Behavior of Ternary System Containing Polysorbate Nonionic Surfactants (폴리솔베이트 비이온성계면활성제를 함유한 3성분계의 상거동)

  • Jeong, Jin-Gi;Shin, Do-Keun;Lee, Jin-Hee;Nam, Ki-Dae
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.617-623
    • /
    • 1997
  • In this study, the mechanism on the phase behavior of polysorbate nonionic surfactants was investigated. In the ternary system containing water, hexanol as a polar oil and surfactant, the phase behaviors ranging from micellar region to occurrence of liquid crystal phase were observed by crossed microscope. As results, fine mosaic texture of liquid crystal phase and other phases were examined in the range of 20~70 wt%. This range if thought to give information about the basic data for the formulation of more stable emulsifying systems or dispersed systems. According to the alkyl chain length, three phase region diminished, whereas two phase range increased without an observation of the anisotropic liquid crystalline phase.

  • PDF

Interface structure and anisotropic strain relaxation of nonpolar a-GaN on r-sapphire

  • Gong, Bo-Hyeon;Jo, Hyeong-Gyun;Song, Geun-Man;Yun, Dae-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.31-31
    • /
    • 2010
  • The growth of the high-quality GaN epilayers is of significant technological importance because of their commercializedoptoelectronic applications as high-brightness light-emitting diodes (LEDs) and laser diodes (LDs) in the visible and ultraviolet spectral range. The GaN-based heterostructural epilayers have the polar c-axis of the hexagonal structure perpendicular to the interfaces of the active layers. The Ga and N atoms in the c-GaN are alternatively stacked along the polar [0001] crystallographic direction, which leads to spontaneous polarization. In addition, in the InGaN/GaN MQWs, the stress applied along the same axis contributes topiezoelectric polarization, and thus the total polarization is determined as the sum of spontaneous and piezoelectric polarizations. The total polarization in the c-GaN heterolayers, which can generate internal fields and spatial separation of the electron and hole wave functions and consequently a decrease of efficiency and peak shift. One of the possible solutions to eliminate these undesirable effects is to grow GaN-based epilayers in nonpolar orientations. The polarization effects in the GaN are eliminated by growing the films along the nonpolar [$11\bar{2}0$] ($\alpha$-GaN) or [$1\bar{1}00$] (m-GaN) orientation. Although the use of the nonpolar epilayers in wurtzite structure clearly removes the polarization matters, however, it induces another problem related to the formation of a high density of planar defects. The large lattice mismatch between sapphiresubstrates and GaN layers leads to a high density of defects (dislocations and stacking faults). The dominant defects observed in the GaN epilayers with wurtzite structure are one-dimensional (1D) dislocations and two-dimensional (2D) stacking faults. In particular, the 1D threading dislocations in the c-GaN are generated from the film/substrate interface due to their large lattice and thermal coefficient mismatch. However, because the c-GaN epilayers were grown along the normal direction to the basal slip planes, the generation of basal stacking faults (BSFs) is localized on the c-plane and the generated BSFs did not propagate into the surface during the growth. Thus, the primary defects in the c-GaN epilayers are 1D threading dislocations. Occasionally, the particular planar defects such as prismatic stacking faults (PSFs) and inversion domain boundaries are observed. However, since the basal slip planes in the $\alpha$-GaN are parallel to the growth direction unlike c-GaN, the BSFs with lower formation energy can be easily formed along the growth direction, where the BSFs propagate straightly into the surface. Consequently, the lattice mismatch between film and substrate in $\alpha$-GaN epilayers is mainly relaxed through the formation of BSFs. These 2D planar defects are placed along only one direction in the cross-sectional view. Thus, the nonpolar $\alpha$-GaN films have different atomic arrangements along the two orthogonal directions ($[0001]_{GaN}$ and $[\bar{1}100]_{GaN}$ axes) on the $\alpha$-plane, which are expected to induce anisotropic biaxial strain. In this study, the anisotropic strain relaxation behaviors in the nonpolar $\alpha$-GaN epilayers grown on ($1\bar{1}02$) r-plane sapphire substrates by metalorganic chemical vapor deposition (MOCVO) were investigated, and the formation mechanism of the abnormal zigzag shape PSFs was discussed using high-resolution transmission electron microscope (HRTEM).

  • PDF

Growth and characterization of MgZnO grown on R-plane sapphire substrate by plasma-assisted molecular beam epitaxy

  • Han, Seok-Kyu;Kim, Jung-Hyun;Hong, Soon-Ku;Lee, Jae-Wook;Lee, Jeong-Yong;Kim, Ho-Jong;Song, Jung-Hoon;Yao, Takafumi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.114-114
    • /
    • 2009
  • ZnO has received considerable attention due to its potential applicability to optoelectronic devices such as ultraviolet-light emitting diodes (UVLEDs) and laser diodes (LDs). As well known, however, polar ZnO with the growth direction along the c-axis has spontaneous and piezoelectric polarizations that will result in decreased quantum efficiency. Recently, nonpolar ZnO has been studied to avoid such a polarization effect. In order to realize applications of nonpoar ZnO-based films to LEDs, growth of high quality alloys for quantum well structures is one of the important tasks that should be solved. $Mg_xZn_{1-x}O$ and $Cd_xZn_{1-x}O$ is ones of most promising alloys for this application because the alloys of ZnO with MgO and CdO provide a wide range of band-gap engineering spanning from 2.4 to 7.8 eV. In this study, we investigated on $Mg_xZn_{1-x}O$ films grown with various Mg/Zn flux ratios The films were grown on R-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). we investigated on $Mg_xZn_{1-x}O$ films grown with various Mg/Zn flux ratios. The films were grown on R-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). With the relatively low Mg/Zn flux ratios, a typical striated anisotropic surface morphology which was generally observed from the nonpolar (11-20) ZnO film on r-plane sapphire substrates. By increasing the Mg/Zn flux ratio, however, additional islands were appeared on the surface and finally the surface morphology was entirely changed, which was generally observed for the (0001) polar ZnO films by losing the striated morphology. Investigations by X-ray $\Theta-2{\Theta}$ diffraction revealed that (0002) and (10-11) ZnO planes are appeared in $Mg_xZn_{1-x}O$ films by increasing the Mg/Zn flux ratio. Further detailed investigation by transmission electron microscopy (TEM) and photoluminescence (PL) will be discussed.

  • PDF

Fast liquid crystal switching performance on indium zinc oxide films with low curing temperature via ion-beam irradiation (이온빔 조사된 저온 소성 인듐 아연 산화막을 이용한 액정의 고속 스위칭 특성 연구)

  • Oh, Byeong-Yun
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.904-909
    • /
    • 2019
  • Using the ion-beam irradiated indium zinc oxide (IZO) films which was cured at $100^{\circ}C$, uniform LC and homogeneous alignment of liquid crystal (LC) molecules was achieved. The IZO film was deposited on the glass substrate at the curing temperature of $100^{\circ}C$ and irradiated by the ion-beam which is an LC alignment method. To verify the LC alignment characteristics, polarizing optical microscope and the crystal rotation method were used. Additionally, it was confirmed that the LC cell with the IZO films had an enough thermal budget for high-quality LC applications. Field emission scanning electron microscope was conducted as a surface analysis to evaluate the effect of the ion-beam irradiation on the IZO films. Through this, it was revealed that the ion-beam irradiation induced rough surface with anisotropic characteristics. Finally, electro-optical (EO) performances of the twisted-nematic cells with the IZO films were collected and it was confirmed that this cell had better EO performances than the conventional rubbed polyimide. Furthermore, the polar anchoring energy was measured and a suitable value for stable LC device operation was achieved.

A Study on the Magnetic Properties of Ion Irradiated Cu/Co Multilayer System

  • Kim, T.Y.;Chang, G.S.;Son, J.H.;Kim, S.H.;Shin, S.W.;Chae, K.H.;Sung, M.C.;Lee, J.;Jeong, K.;Lee, Y.P.;;Whang, C.N
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.163-163
    • /
    • 2000
  • In this research, we used the ion irradiation technique which has an advantae in improving intentionally the properties of surface and interface in a non-equilibrium, instead of the conventional annealing method which has been known to improve the material properties in the equilibrium stat. Cu/Co multilayered films were prepared on SiN4/SiO2/Si substrates by the electron-beam evaporation for the Co layers and the thermal evaporation for the Cu layers in a high vacuum. The ion irradiation with a 80keV Ar+ was carried out at various ion doses in a high vacuum. Hysteresis loops of the films were investigated by magneto-optical polar Kerr spectroscopy at various experimental conditions. The change of atomic structure of the films before and after the ion irradiation was studied by glancing angle x-ray diffraction, and the intermixing between Co and Cu sublayers was confirmed by Rutherford backscattering spectroscopy. The surface roughness and magneto-resistance were measured by atomic force microscopy and with a four-point probe system, respectively. During the magneto-resistance measurement, we changed temperature and the direction of magnetization. From the results of experiments, we found that the change at the interfaces of the Cu/Co multilayered film induced by ion irradiation cause the change of magnetic properties. According to the change in hysteresis loop, the surface inplane component of magnetic easy axis was isotropic before the ion irradiation, but became anisotropic upon irradiation. It was confirmed that this change influences the axial behavior of magneto-resistance. Especially, the magneto-resistance varied in accordance with an external magnetic field and the direction of current, which means that magneto-resistance also shows the uniaxial behavior.

  • PDF